LAMB WAVE DECOMPOSITION USING COMCENTRIC RING AND CIRCULAR PIEZOELECTRIC TRANSDUCERS

Chulmin Yeum¹, Hoon Sohn¹, Jeong Beom Ihn²

¹ Department of Civil and Environment Engineering, Korea Advanced Institute of Science and Technology

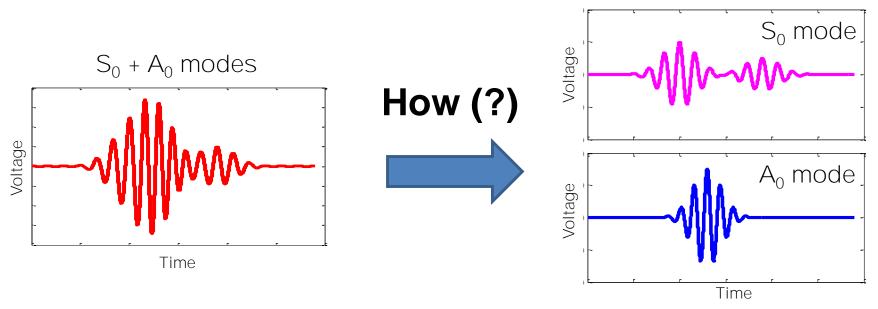
² Boeing Research & Technology, Seattle, WA

Presented at EWSHM 2010, Sorrento, June 29, 2010

This document contains confidential and proprietary information owned by KAIST and Boeing. The distribution is limited.

Outline

1	Introduction
2	Theoretical Formulation
3	Numerical Simulation
4	Test Results
5	Conclusion


Motivation

Surface-mountable piezoelectric transducer based SHM techniques have been widely used for monitoring of aircraft structures.

How can we instantaneously extract a userspecified fundamental Lamb wave mode from measured Lamb wave signals using one sided attached PZT transducers?

This document contains confidential and proprietary information owned by KAIST and Boeing. The distribution is limited.

The Objective of This Study

Research objectives

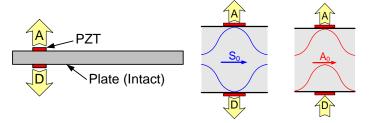
Decomposition of fundamental Lamb wave (S $_0$ and A $_0$) modes from measured signals without PZT size adjustment and frequency tuning

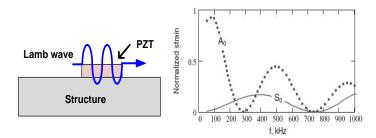
- Advantages of the proposed technique
- PZTs need to be placed only a single surface of the structure
- Mode decomposition can be performed at any desired frequency without physical adjustment of the PZT size and/or spacing
- Both S₀ and A₀ modes can be simultaneously decoupled and identified at any driving frequency
- A circular design of the dual PZT allows omni-directional Lamb wave decomposition

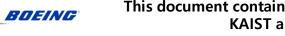
BOEING

Literature Review

Using PZT poling directionality in Lamb wave propagation [Viktorov(1967),Kim (2007)]


Limitation: Accessibility to both surfaces of a structure and difficulty of precise placement of collocated PZTs


Tuning of driving frequency and/or the PZT size Selection of a specific frequency and/or the PZT size where the target mode is predominant [Giurgitiu (2005)]


Limitation: Possible only at a specific frequency and

for a fixed PZT size

KAIST

This document contains confidential and proprietary information owned by KAIST and Boeing. The distribution is limited.

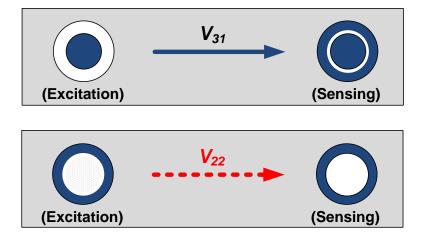
Outline

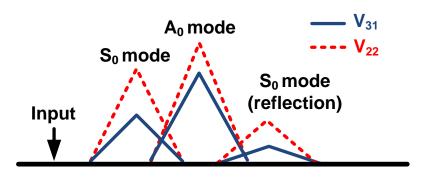

1	Introduction
2	Theoretical Formulation
3	Numerical Simulation
4	Test Results
5	Conclusion

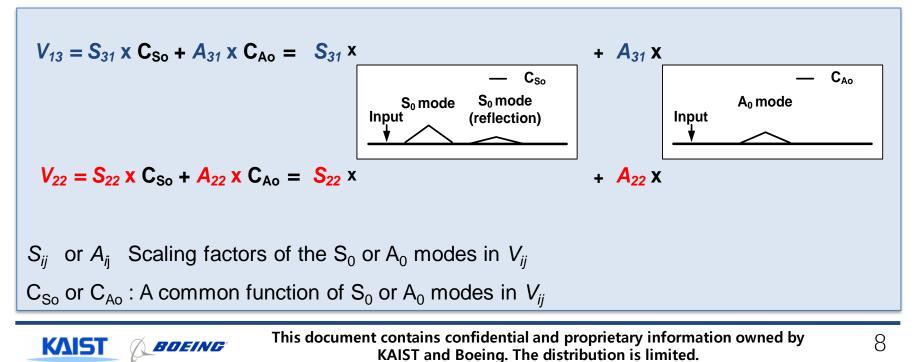
Schematic drawing and picture of the dual PZT

Signals obtained by dual PZTs

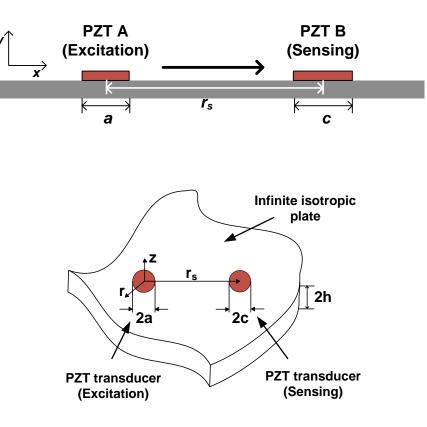
By activating different parts of the excitation and sensing dual PZTs, nine different response signals (V_{ij})


$$V_{ij}$$
, *i* and *j*=1,2 and 3


The subscripts, 1, 2 and 3 denote the entire dual PZT, the other ring and the inner circular PZT, Respectively.



This document contains confidential and proprietary information owned by KAIST and Boeing. The distribution is limited.



Relationship between Actuator/Sensor Size and Response at a Sensor PZT

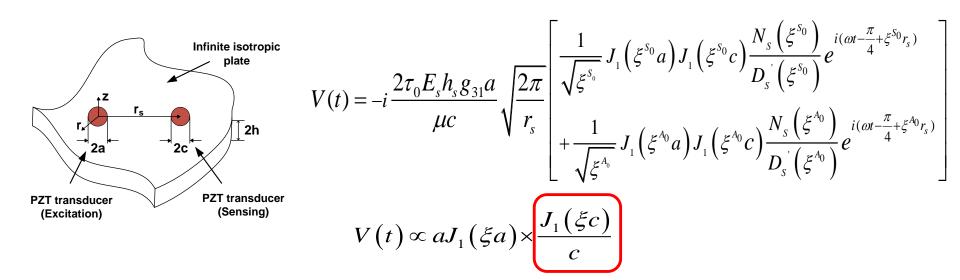
KAIST

BOEING

$$u_x \propto \sin(\xi a)$$
 (Ref 1)


$$V(t) \propto rac{\sin(\xi a)\sin(\xi c)}{c}$$
 (Ref 2)

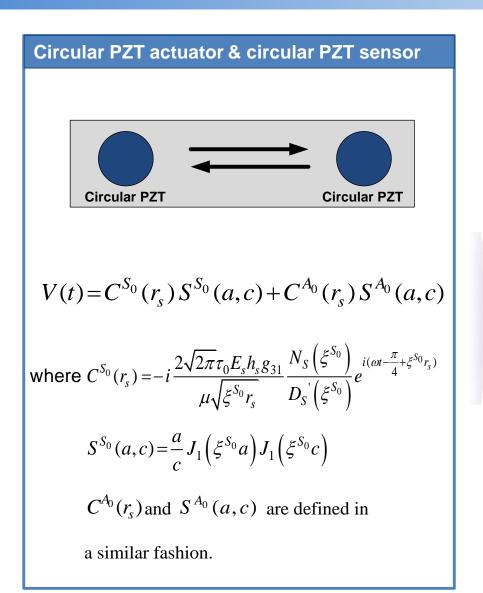
$$u_r(t) \propto a J_1(\xi a)$$
 (Ref 3)


$$V(t) \propto a J_1(\xi a) imes ?$$
 (Ref 4)

• $\boldsymbol{\xi}$ Is wavenumber.

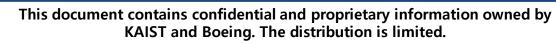
- 1. V. Giurgiutiu., "Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring," SPIE. 5056, 111-122 (2003)
- 2. A. Raghavan et all, "Modeling of piezoelectric-based Lamb-wave generation and sensing for structural health monitoring," SPIE. 5391 (2004)
- 3. Ajay Raghavan et all, "Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring," *Smart Mater. Struct., 14, pp. 1448-1461* (2005)
- 4. H. Sohn et all, "Lamb wave tuning curve calibration for surface-bonded piezoelectric transducers," Smart Mater. Struct. 19, 015007 (2010)

Three Noticeable Factors of Theoretical Equations for 3D a Circular PZT Actuator and Circular PZT Sensor


'Maclaurin **series**', '**asymptotic** Hankel **function**' and 'poisson integral of the Bessel **function**' are used for the derivation of the analytical solution of the Lamb wave response at a circular PZT

- The amplitudes of the S₀ and A₀ modes are functions of the excitation and sensing PZT sizes (a and c)
- In the fixed distance between the sensing and excitation PZTs, signal phases does not change with respect to the variations of the PZT size
- There is no coupled term between the excitation/sensing PZT sizes (a and c) and distance $(r_{\rm s})$

BOEING


Formulation of the Decomposition Technique

KAIST

(BOEING

Dual PZT actuator & dual PZT sensor Dual PZT Dual PZT V = SC $\mathbf{V} = \begin{vmatrix} V_{11} \\ V_{12} \\ \vdots \\ \vdots \\ V_{12} \end{vmatrix}, \ \mathbf{S} = \begin{vmatrix} S_{11} & A_{11} \\ S_{12} & A_{12} \\ \vdots & \vdots \\ S_{12} & A_{12} \end{vmatrix}, \ \mathbf{C} = \begin{bmatrix} C^{S_0}(r_s) \\ C^{A_0}(r_s) \end{bmatrix}$ V_{ii} : Nine different signals measured from dual **PZTs** S_{ii} and A_{ii} : Scaling factors for the S₀ and A₀ mode

11

- 1. A total of nine V_{ij} are obtained by activating different parts (the outer ring, inner circle or both) of the excitation and sensing dual PZTs
- 2. For the given sizes of the dual PZTs, the corresponding scaling factors (S_{ij} and A_{ij}) can be analytically or experimentally computed.
- 3. The matrix **C** can be estimated by taking the pseudo-inverse of the scaling factor matrix **S** and pre-multiply it to the matrix **V**.

$$V = SC$$
 \longrightarrow $S^{\dagger}V = C$ '†' is the pseudo-inverse

4. Finally, either the S_0 or A_0 mode in any measured signal can be decomposed and isolated.

Ex) The contribution of the S₀ mode in V_{13} can be obtained as $S_{13} \times C^{S_0}(r_s)$.

The contribution of the A₀ mode in V_{13} can be obtained as $A_{13} \times C^{A_0}(r_s)$.

What is the practical problem?

- The effective PZT size becomes less than the physical PZT size due to bonding layer
- Material properties of the structure continuously vary due to temperature

Estimation of the scaling factors from measured signals

 $\tilde{S}_{ij} = S_{ij} / S_{11} = (S_{ij} \times C^{S_0}(r_s)) / (S_{11} \times C^{S_0}(r_s))$ Amplitude of the S₀ mode in V_{ij} Amplitude of the S₀ mode in V₁₁

 $ilde{S}_{ii}(ilde{A}_{ii})$ is the normalized scaling factor

This document contains confidential and proprietary information owned by KAIST and Boeing. The distribution is limited.

BOEING

Requirement

The first arriving S_0 and A_0 modes are well separated in the time domain so that their amplitude can be easily estimated.

Problem

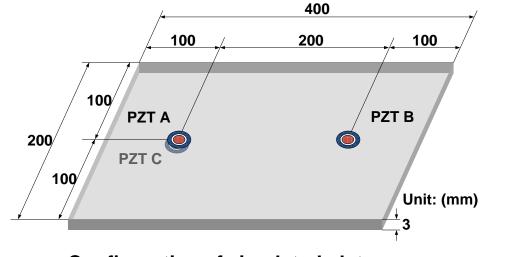
When the distance between the excitation and sensing PZTs is too short or there are multiple reflection paths, the estimation of the amplitudes of the first arriving S_0 and A_0 modes can be challenging.

Solution

A pair of excitation and sensing PZTs is placed with a longer spacing so that the first arrivals of the S_0 and A_0 modes can be well separated.

The normalized scaling factors estimated from a single long path can be used for the mode decomposition in all the other paths with varying path lengths as long as they use the same sizes of the dual PZTs.

Outline

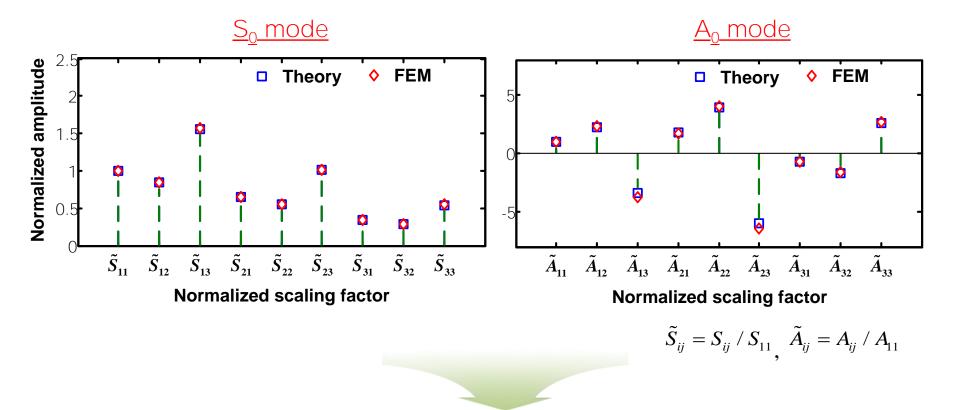


1	Introduction
2	Theoretical Formulation
3	Numerical Simulation
4	Test Results
5	Conclusion



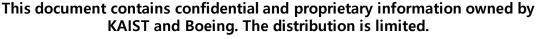
3D Numerical Simulation

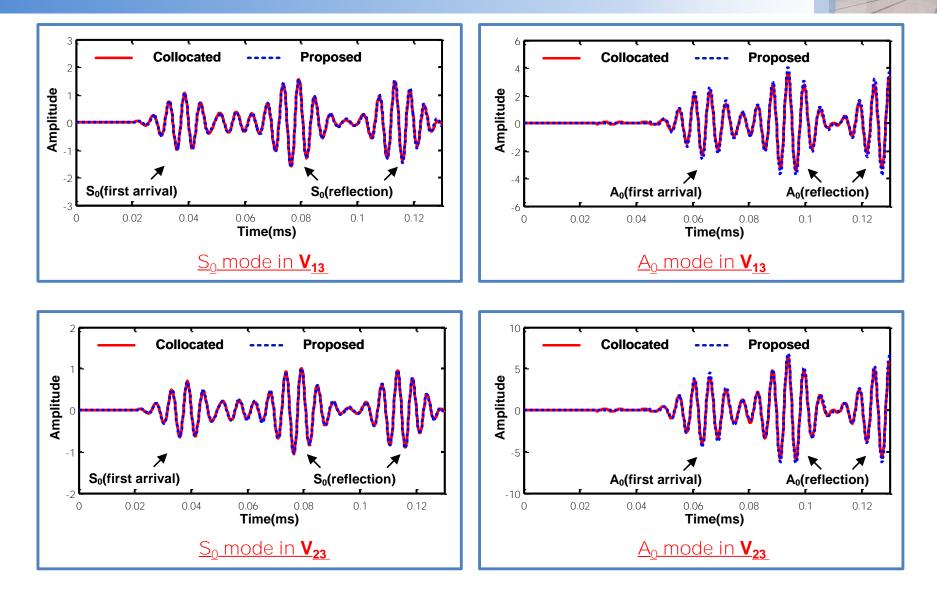
Configuration of simulated plate


Dimension of the dual PZT

Input	Pin-force, 180 kHz, 7 cycle toneburst
Material	Aluminum
Sampling rate	5 MHz
Mesh size	1 mm x 1mm x 1mm
Software	MSC/NASTRAN

Comparison of the Normalized Scaling Factors Obtained from Numerical Simulation and Theoretical Solution



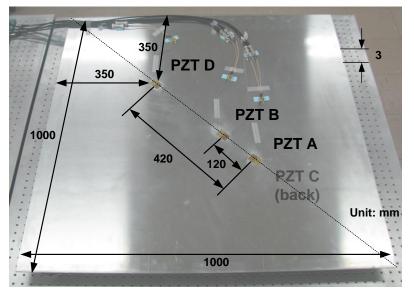

Numerical and theoretical normalized scaling factors match well

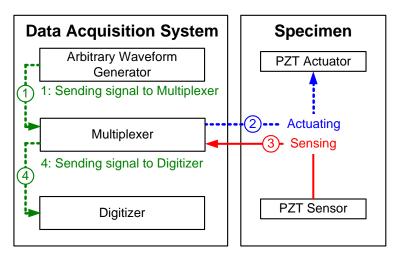
KAIST

BOEING

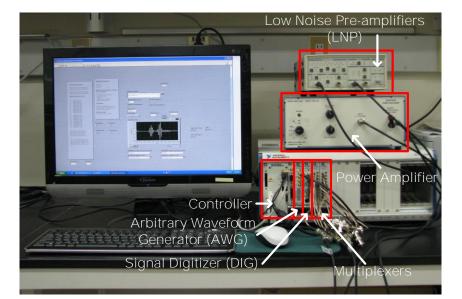
Comparison between the S₀ and A₀ Modes Decomposed by the Proposed Technique and the Collocated PZTs

This document contains confidential and proprietary information owned by KAIST and Boeing. The distribution is limited.


Outline


1	Introduction
2	Theoretical Formulation
3	Numerical Simulation
4	Test Results
5	Conclusion

Experimental Setup



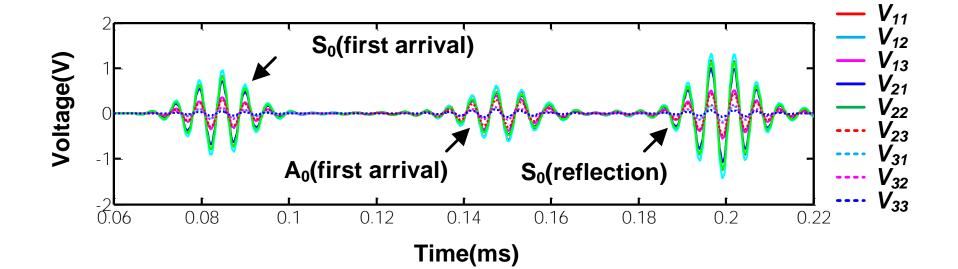
<u>Test specimen</u>

BOEING

KAIST

Data acquisition system

- The dimension of each PZT :
 - * 4 packaged dual PZTs
 - * PSI-5A4E type
- Input signal :


A 180kHz tone-burst signal with \pm 10 peak-to-peak voltage

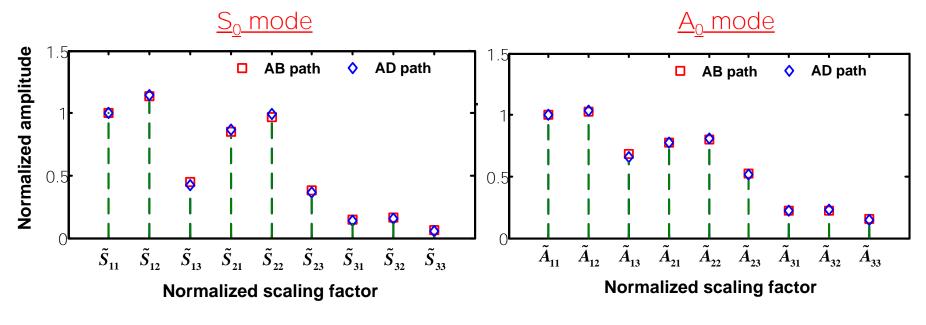
- Sampling rate : 20MS/s
- Data averaging : 20 times

KAIST

BOEING

- The amplitudes of the S₀ and A₀ modes are functions of the excitation and sensing PZT sizes
- In the fixed distance between the sensing and excitation PZTs, signal phases does not change with respect to the variations of the PZT size

Comparison between the S₀ and A₀ Modes Decomposed by the Proposed Technique and the Collocated PZTs (Path AD)



BOEING

This document contains confidential and proprietary information owned by KAIST and Boeing. The distribution is limited.

Comparison of the Normalized Scaling Factors of the S₀ and A₀ Modes Obtained from the Paths AB and AD



Normalized scaling factors in the path AD were in good agreement with those in the path AB.

Comparison between the S₀ and A₀ Modes Decomposed by the Proposed Technique and the Collocated PZTs (Path AB)

BOEING

This document contains confidential and proprietary information owned by KAIST and Boeing. The distribution is limited.

Outline

1	Introduction
2	Theoretical Formulation
3	Numerical Simulation
4	Test Results
5	Conclusion

Concluding Remarks

Summary

- Fundamental Lamb wave modes (S₀ and A₀) modes are successfully decomposed by the proposed mode decomposition technique using a pair of dual PZTs
- 2. The S_0 and A_0 modes can be decomposed at any desired frequency without any other special tuning.

Future study

- 1. Extend the proposed concept to anisotropic structure and complex geometries with stiffeners or welded joints
- 2. Effectiveness of the proposed technique on damage detection

Reference

V. Giurgiutiu., "Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring," SPIE. 5056, 111-122 (2003)

A. Raghavan and C. E. S. Cesnik, "Modeling of piezoelectric-based Lamb-wave generation and sensing for structural healt h monitoring," SPIE. 5391 (2004)

H. Sohn, S. J. Lee, "Lamb wave tuning curve calibration for surface-bonded piezoelectric transducers," Smart Mater. Struct . 19, 015007 (2010).

I. A. Viktorov, Rayleigh and Lamb Waves (Plenum, New York, 1967).

S. B. Kim, and H. Sohn, "Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials," Smart Mater. Struct. 16, 2375-2387 (2007).

J. L. Rose, S. P. Pelts, and M. J. Quarry, "A comb transducer for mode control in guided wave NDE," IEEE Ultras. Symp. Proc. 857–860 (1996).

F. L. Degertekin and B. T. Khuri-Yakub, "Single mode lamb wave excitation in thin plates by Hertzian contacts," Appl. Phys. Lett. 69, 146–148 (1996).

P. D. Wilcox, M. J. S. Lowe, and P. Cawley, "Mode and transducer selection for long range Lamb wave inspection," J. Intell. Mater. Syst. Struct. 12, 553–565 (2001).

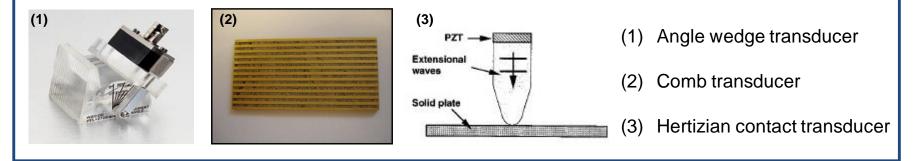
V. Giurgiutiu, "Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring," J. Intell. Mater. Syst. Struct. 16, 291–305 (2005).

Do You Have Any Questions ?

I would be happy to help

Backup Slides

- (1) The target structure has a uniform thickness and isotropic material properties
- (2) All the dual PZTs installed are identical in terms of their sizes and bonding conditions
- (3) The driving frequency range is selected so that only the S_0 and A_0 modes are excited
- (4) Spatial distribution of temperature over the specimen is uniform although temperature variation over time is allowed and has no effect on the proposed technique.



Literature Review : Conventional Transducers for Selective Lamb Wave Generation and Sensing

Conventional Techniques

- 1. Angle wedge tuning using contact and non contact type wedge transducer [Wilcox (2002)]
- 2. Wavelength-matched linear arrays, using comb transducers [Rose (1998)]
- 3. Point source point receiver (PS-PR) using Hertzian contacts [Degertekin (1996)]

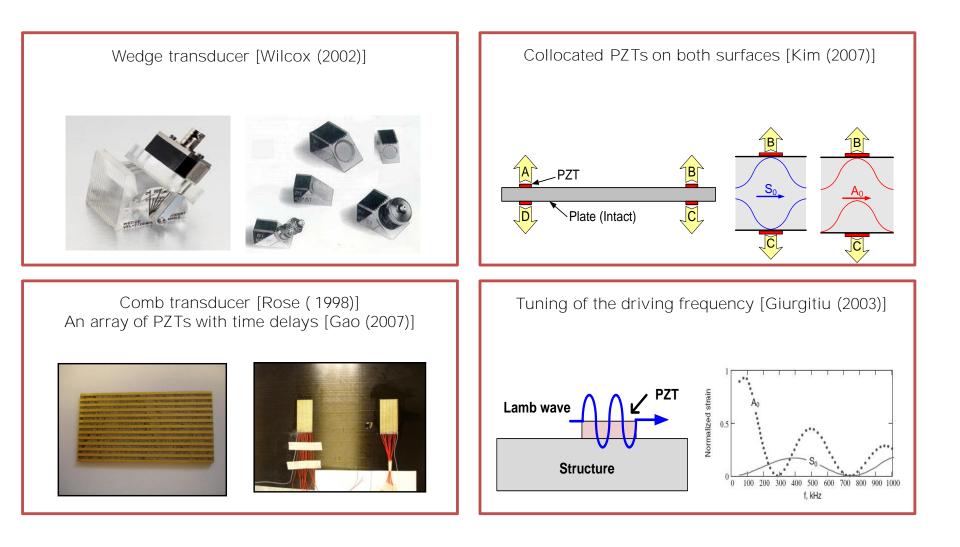
Limitation

KAIST

BOEING

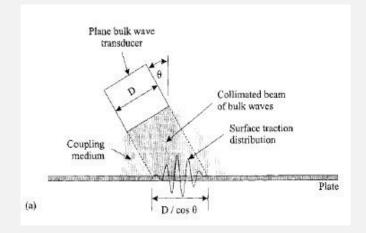
- 1. Too heavy and bulky for online monitoring of structures (ex. airplanes)
- 2. Directionality for selective Lamb wave mode generation and sensing
- 3. Not suitable for deployment to large-scale structure due to relatively high cost
- 4. Manually adjustment of some parameters of the transducer (ex. the incidence angle or the ele ment spacing)

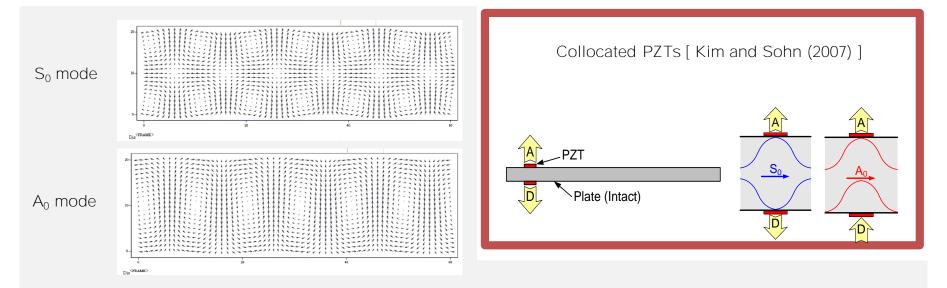
where a_1 , a_2 and a_3 are the outer and the inner radii of the ring PZT and the radius of the inner circular PZT, respectively,


$$\mathbf{V} = \begin{bmatrix} V_{11} \\ V_{12} \\ \vdots \\ V_{33} \end{bmatrix}, \ \mathbf{S} = \begin{bmatrix} S_{11} & A_{11} \\ S_{12} & A_{12} \\ \vdots & \vdots \\ S_{33} & A_{33} \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} C^{S_0}(r_s) \\ C^{A_0}(r_s) \end{bmatrix}$$

$$\begin{split} S_{33} &= S^{S_0}(a_3, a_3) , S_{23} = S^{S_0}(a_1, a_3) - S^{S_0}(a_2, a_3) , \\ S_{32} &= (K_1 - K_2)^{-1} (K_1 S^{S_0}(a_3, a_1) - K_2 S^{S_0}(a_3, a_2)) , \\ S_{22} &= (K_1 - K_2)^{-1} \begin{bmatrix} K_1 (S^{S_0}(a_1, a_1) - S^{S_0}(a_3, a_1)) \\ -K_2 (S^{S_0}(a_1, a_2) - S^{S_0}(a_3, a_2)) \end{bmatrix} , \\ S_{21} &= (K_1 - K_2 + K_3)^{-1} \{ (K_1 - K_2) S_{22} + K_3 S_{23}) , \\ S_{31} &= (K_1 - K_2 + K_3)^{-1} \{ (K_1 - K_2) S_{32} + K_3 S_{33}) , \\ S_{13} &= S_{23} + S_{33} , S_{12} = S_{22} + S_{32} , S_{11} = S_{21} + S_{31} , \\ K_j &= \pi (a_j)^2 , \end{split}$$

 A_{ij} are defined in a similar fashion using $S^{A_0}(a_i, a_j)$ and K_j .




Problems

- Difficulty of setting the angle of incidence with appreciable accuracy
- Consideration of time delay due to block.
- Significant signal attenuation before impinging the inspection material
- Generation of additional reflected waves from interfaces

Conventional Techniques for the Lamb Wave Decomposition - Collocated PZTs -

Problems

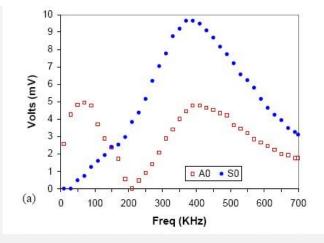
Conventional Techniques for the Lamb Wave Decomposition - Comb transducer -

Problems

- Decomposition of Lamb waves at a specific frequency
- Needs for a multi channel data acquisition system
- Sensitive to prescribed time delay profiles or wavelength

Comb transducer [Rose (1998)]

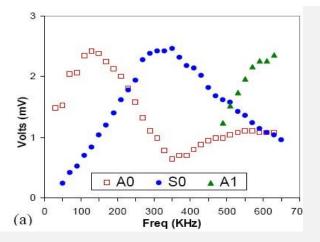
An array of PZTs with time delays [Gao (2007)]



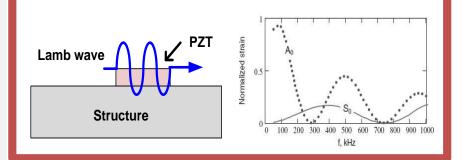
BOEING

← PZT

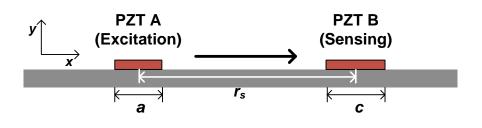
Conventional Techniques for the Lamb Wave Decomposition - Tuning of the driving frequency -



Aluminum 2024-T3 1.07 mm


Problems

- Decomposition of Lamb waves at a specific frequency
- Needs for a baseline tuning curve


Aluminum 2024-T3 7 mm

Theoretical Response Model for 2D PZTs

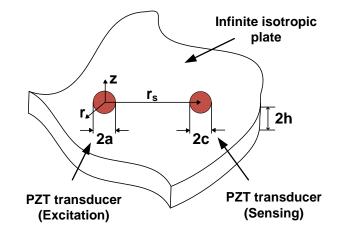
$$V(t) \propto \frac{\sin(\xi a) \sin(\xi c)}{2}$$

С

 $u_x \propto \sin(\xi a)$

Displacement at x from the PZT A [Giurgiutiu (2003)]
$$u_{x}(t) = -i\frac{\tau_{0}}{\mu} \cdot \left[\frac{\sin\xi^{S_{0}}a}{\xi^{S_{0}}} \frac{N_{S}(\xi^{S_{0}})}{D_{S}'(\xi^{S_{0}})}e^{i(\xi^{S_{0}}x-\omega t)} + \frac{\sin\xi^{A_{0}}a}{\xi^{A_{0}}} \frac{N_{A}(\xi^{A_{0}})}{D_{A}'(\xi^{A_{0}})}e^{i(\xi^{A_{0}}x-\omega t)}\right]$$

Voltage Response at PZT B [Giurgiutiu (2003)]


$$V(t) = \frac{\tau_0 E_s h_s g_{31}}{\mu} \left[\frac{\sin \xi^{S_0} a}{\xi^{S_0}} \frac{\sin \xi^{S_0} c}{2c} \frac{N_S(\xi^{S_0})}{D_S'(\xi^{S_0})} e^{i(\xi^{S_0} r_s - \omega t)} + \frac{\sin \xi^{A_0} a}{\xi^{A_0}} \frac{\sin \xi^{A_0} c}{2c} \frac{N_S(\xi^{A_0})}{D_S'(\xi^{A_0})} e^{i(\xi^{A_0} r_s - \omega t)} \right]$$

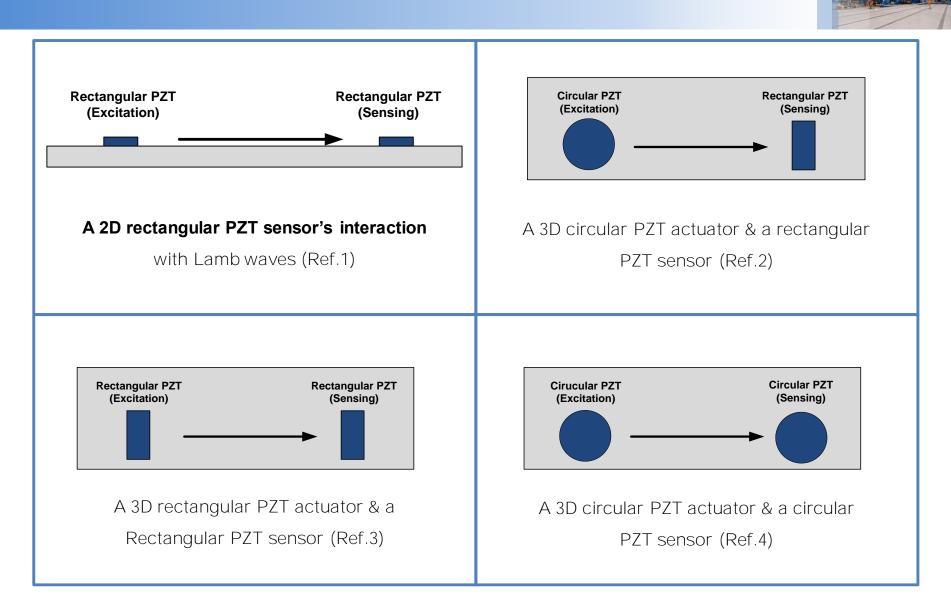
This document contains confidential and proprietary information owned by KAIST and Boeing. The distribution is limited.

Theoretical Response Model for 3D Circular PZTs

$$u_r(t) \propto a J_1(\xi a)$$
$$V(t) \propto a J_1(\xi a) \times ?$$

Displacement at x from the PZT A [Ajay(2004)]

$$u_{r}(r,z=b) = -\pi i \frac{\tau_{0}a}{\mu} e^{i\omega t} \cdot \left[J_{1}\left(\xi^{S_{0}}a\right) \frac{N_{S}\left(\xi^{S_{0}}\right)}{D_{S}\left(\xi^{S_{0}}\right)} H_{1}^{(2)}\left(\xi^{S_{0}}r\right) + J_{1}\left(\xi^{A_{0}}a\right) \frac{N_{A}\left(\xi^{A_{0}}\right)}{D_{A}\left(\xi^{A_{0}}\right)} H_{1}^{(2)}\left(\xi^{A_{0}}r\right) \right]$$


Voltage Response at PZT B [Lee and Sohn (2010)]

$$V(t) = -i\frac{\tau_0 E_s h_s g_{31} a}{\mu c^2} e^{i\omega t} \cdot J_1(\xi^{S_0} a) \frac{N_s(\xi^{S_0})}{D_s'(\xi^{S_0})} \int_{r_s-c}^{r_s+c} \left\{ \xi^{S_0} r H_0^{(2)}(\xi^{S_0} r) \cdot 2\tan^{-1} \left(\sqrt{\frac{4r^2 r_s^2}{\left(r^2 + r_s^2 - c^2\right)^2} - 1} \right) \right\} dr$$

This document contains confidential and proprietary information owned by KAIST and Boeing. The distribution is limited.

Existing Theoretical Models for PZT Responses

