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Research objective

Development of a new methodology that explicitly considers 

the effects of varying environmental conditions without using any 

direct comparison with baseline data obtained from Intact conditions.

Uniqueness of the proposed technique

(1) Robust delamination diagnosis even under varying temperature using an 

automatically determined damage threshold

(2) Effective detection of multiple delaminations

(3) Application to complex geometric structures by applying the proposed mode 

extraction technique using dual PZTs
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Composite specimen with PZT transducers Delamination and temperature have similar effects

What Makes the Detection of Delamination Challenging?
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Piezo electric material

Nickel layer
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Top
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connector
Dual PZT

Schematic drawing and picture of the dual PZT

Signals obtained from dual PZTs

ijV , i and j r and c

Vrr denotes a response measured by the ring part of the

sensing PZT when the ring part of the exciting PZT is

activated. Similarly, Vrc is measured by the circular part of

the sensing PZT when the ring part of the excitation PZT

is actuated.

Notations of signals obtained from the dual PZTs

Description of a Dual PZT and Signal Notations
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Delamination

Path 1

Time
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(1) Data collection from multiple paths (2) Extraction of the A0 modes from all paths
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(3) Calculation of damage indexes (4) Damage classification using outlier analysis 
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Correlation-based Damage Index 
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Correlation-based Damage Index 
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 Ω is the driving frequency.

A0( i, Ω) or A0( j, Ω) is the A0 mode obtained from the paths i and j ( 1≤ i, j ≤20) 

The path ‘j’ is selected as the undamaged paths having same angle and spacing with the path i. 

‘Corr ‘ is the cross correlation.

d is the angle of the path i. (d = 0o, 45o, 90o, and 135o)

nd is the number of paths of the d angle.
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(1) Calculation of damage indexes using A0 mode in

all paths
(2) Arrange all damage indexes in an ascending order

(3) Fit a parametric distribution to the n-1 smallest

damage indices and compute a threshold value
(4) If value of the nth smallest damage index is larger

than the threshold value, nth, n+1th ~ Nth damage

indices are determined to be damaged.

Instantaneous Outlier Analysis
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Dual PZT Impact damage

Impact-induced Delamination Damage 
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- The dimension of each PZT :  

*  9 packaged dual PZTs

*  PSI-5A4E type

- Input signal : 

A tone-burst signal with ± 10 peak-to-peak voltage  

A frequency range 80 kHz to 120 kHz with an increment         

of 10 kHz

- Sampling rate : 20MS/s

- Power amplifier gain : 5

- Data averaging : 120 times 

- Temperature : -10, 20, 50 oC

PZT Actuator

PZT Sensor

Arbitrary Waveform 

Generator

Digitizer

Data Acquisition System Specimen

Sensing

Actuating
Multiplexer

1
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1: Sending signal to Multiplexer

4: Sending signal to Digitizer

Temperature

chamberData acquisition 

system

Impact
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Impact

tester

Experimental Setup for Impact and Temperature Tests



Instantaneous Outlier Analysis (Intact)
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Summary and Conclusion

 An instantaneous delamination detection technique is developed and validated using data

obtained from damage states of a flat composite specimen and a specimen with stringers.

 The effectiveness of the proposed instantaneous technique is demonstrated explicitly under

varying temperature and using structural components with additional structural features

such as stringers.

 A fundamental Lamb wave mode (A0 mode) was successfully extracted by the proposed

mode extraction technique using a pair of dual PZTs at any desired frequency without any

other special tuning.
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Correlation-based Damage Index 
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 Ω is the driving frequency.

A0( i, Ω) or A0( j, Ω) is the A0 mode obtained from the paths i and j ( 1≤ i, j ≤20) 

The path ‘j’ is selected as the undamaged paths having same angle and spacing with the path i. 

‘Corr ‘ is the cross correlation.

d is the angle of the path i. (d = 0o, 45o, 90o, and 135o)

nd is the number of paths of the d angle.
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on a Multilayer Composite Material 

•  Anisotropic nature of a composite material

S0 mode A0 mode

‘0-1’ and ‘ 0-3’ paths have same spacings.

•  Fast S0 mode and slow A0 mode

S0 mode A0 mode

VS0 ≈ 5572m/s and  VA0 ≈ 1460m/s  

Attenuation

•  High attenuation of Lamb waves

Composite specimen with PZT transducers
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