Applications of Computer Vision in Structural Health Monitoring

Shirley J. Dyke¹, Chul Min Yeum¹, Christian Silva², and Jeff Demo³

(1) Departments of Civil Engineering, Purdue University, United States
 (2) Departments of Mechanical Engineering, Purdue University, United States

(3) Luna Innovation Inc., United States

- 1. Big Picture of Vision based Structure Health Monitoring
- 2. Vision based Automated Visual Inspection of Large-scale Infrastructure
 - Object Recognition based Crack Detection
 - Optimal Design and Identification of Fiducial Markers
- 3. Vehicle Classification on a Mobile Bridge
- 4. Conclusion

Big Picture of Vision based Structural Health Monitoring

Previous Research Works

Crack detection and quantification

Image stitching for defect detection

Spalling detection

Post earthquake evaluation

brick counting for façade construction

Surface damage segmentation

3D recovery for underwater inspection

Corrosion detection

1 2 3 4

- 2. Ioannis Brilakis, Georgia Institute of Technology, USA
- 3. Michael O'Byrne, Trinity College Dublin, Ireland
- 4. Alberto Ortiz, University of Balearic Islands, Spain

Intelligent Infrastructure Systems Lab

- **1. Big Picture of Vision based Structure Health Monitoring**
- 2. Vision based Automated Visual Inspection of Large-scale Infrastructure
 - Object Recognition based Crack Detection
 - Optimal Design and Identification of Fiducial Markers
- 3. Vehicle Classification on a Mobile Bridge
- 4. Conclusion

Proposed Approach

Objective

Development of a vision-based visual inspection technique using a large volume of images collected by aerial cameras

Advantage

- Fully automated visual inspection
- Use of images taken under uncontrolled circumstance
- Robust detection and minimizing false-positive detection and misdetection

Problems of Current Vision based Damage Detection

Non-crack area

Images of a fatigue crack from different view points

- Many false-positive alarms and misdetections
 → Detection of damage-sensitive areas (object)
- Visibility depending on viewpoints

 \rightarrow Use of many different viewpoints of object images

Overview of the Proposed Techniques

Experimental Setup and Results

- # of images : 72 (Nikon D90)
- Image resolution : 4288 x 2848
- # of object (bolts) : 68
- # of artificial cracks : 2 (A and B)
- Working distance : 2~3 m
- # of training images : 5 (68 positive and 204 negative image patches)

Location A

Location **B**

Damage detection

- **1. Big Picture of Vision based Structure Health Monitoring**
- 2. Vision based Automated Visual Inspection of Large-scale Infrastructure
 - Object Recognition based Crack Detection
 - Optimal Design and Identification of Fiducial Markers
- 3. Vehicle Classification on a Mobile Bridge
- 4. Conclusion

Motivation of Marker-based Structural Health Monitoring

Drone fleets could monitor bridge safety^{*}

In reality

Problem: Marker corruption (dirt, torn, shadow, ...)

* Reference: <u>http://spectrum.ieee.org/tech-talk/robotics/aerial-robots/drones-could-monitor-bridge-safety</u> Researchers: Usman Khan (Tufts University), Babak Moaveni (Tufts University)

Proposed Error-correctable Marker Design and Detection

- How to design markers for correcting errors
- How to estimate original markers from corrupted markers

Objective

- Error-correctable design and detection of fiducial markers under permanent occlusion (corruption)
- Development of configurable optimal marker design

Contribution

- Advanced error-correctable capability under permanent occlusion (corruption)
- Probabilistic evaluation of errorcorrectable capability

Demonstration of the Proposed Technique (Video)

Intelligent Infrastructure Systems Lab

- **1. Big Picture of Vision based Structure Health Monitoring**
- 2. Vision based Automated Visual Inspection of Large-scale Infrastructure
 - Object Recognition based Crack Detection
 - Optimal Design and Identification of Fiducial Markers
- 3. Vehicle Classification on a Mobile Bridge
- 4. Conclusion

Rapidly Emplaced Bridge (REB)

Objective

Development of an algorithm to accurately monitor usage patterns of the bridge, recording the classes of vehicles traversing a mobile bridge

Similarity between Object Image Categorization and Vehicle Classification

Intelligent Infrastructure Systems Lab

Overview of the Proposed Technique

Training

- Step 1. Acceleration signal acquisition
- Step 2. Estimation of vehicle exit time
- Step 3. Signal resampling
- Step 4. Spectrogram computation
- Step 5. Integral image computation
- Step 6. Feature extraction
- Step 7. Learning vehicle classifiers

Testing

Step 1. Running 1~6

Step 2. Training data set estimation using a

reference vehicle

Step 3. Applying vehicle classifiers learned from corresponding training data set

Preliminary Full Scale Experimental Testing

- Installation of 12 Acc.
- 1024 Hz sampling
- Wood supports and ramps
- Starting from outside of the bridge
- 276 sample data (23 * 12)
 - ✓ V1: 15 runs (slow, middle, fast speed)
 - ✓ V2: 8 runs (slow, fast speed)

Run 1

Run 2

Confusion matrix

	Predicte		
Actual class	V1	V2	Accuracy
V1	15	0	(15/15) 100 %
V2	1	7	(7/8) 88 %

Experimental Setup (Lab-scale)

Bridge installation

B1 (gravel)

B2 (rubber)

B3 (wood)

- Installation of 8 Acc.
- 1024 Hz sampling
- Drawing vehicles from three different
 people
- Starting from outside of the bridge
- 864 sample data (8 x 6 x 3 x 6)
 - ✓ 6 vehicle (V1, V3, V4, V5, V6)
 - ✓ 6 Run (3 forward, 3 backward)
 - ✓ 8 Sensors
 - ✓ 3 Boundary (BG, BR, BW)

Testing vehicles

Experiment Video (Lab-scale)

Vehicle Classification Results (Lab-scale)

Confusion matrix (B1-B1,B2-B2,B3-B3)

	Predicted class						
Actual class	V1	V3	V4	V5	V6	V7	Accuracy
V1	17	0	0	1	0	0	(17/18) 94.4 %
V3	0	18	0	0	0	0	(18/18) 100 %
V4	0	0	18	0	0	0	(18/18) 100 %
V5	0	0	0	18	0	0	(18/18) 100 %
V6	0	0	0	0	18	0	(18/18) 100 %
V7	0	0	0	0	0	18	(18/18) 100 %

Confusion matrix (B1-B1B2,B2-B2B3,B3-B1B3)

		Ρ					
Actual class	V1	V3	V4	V5	V6	V7	Accuracy
V1	17	0	0	1	0	0	(17/18) 94.4 %
V3	1	17	0	0	0	0	(17/18) 94.4 %
V4	6	0	11	1	0	0	(11/18) 61.1%
V5	7	0	1	10	0	0	(10/18) 55.6%
V6	1	0	2	3	12	0	(12/18) 66.7%
V7	0	0	0	0	0	18	(18/18) 100%

- **1. Big Picture of Vision based Structure Health Monitoring**
- 2. Vision based Automated Visual Inspection of Large-scale Infrastructure
 - Object Recognition based Crack Detection
 - Optimal Design and Identification of Fiducial Markers
- 3. Vehicle Classification on a Mobile Bridge

4. Conclusion

- Visual data provides crucial and abundant information regarding the condition of a structure, such as change detection,
- Recent advances in the various sensors and sensing systems achieve remarkable visual sensing capabilities in time and space using automated methods. Moreover, The field of computer vision is devoted to such problems of interpreting the world through the analysis of visual images.
- The opportunities associated with automated processing and advanced sensing systems have accelerated the work to develop autonomous visual methods for SHM.
- This study successfully shows implementation of computer vision technology to solve two different problems in SHM.
- It is anticipated that such repurposing of computer vision technology can address many problems in SHM with intelligent ways.

#SELFIE

Intelligent Infrastructure Systems Lab

CHICAGO EST. 1837