Big Visual Data Analytics for Damage Classification in Civil Engineering

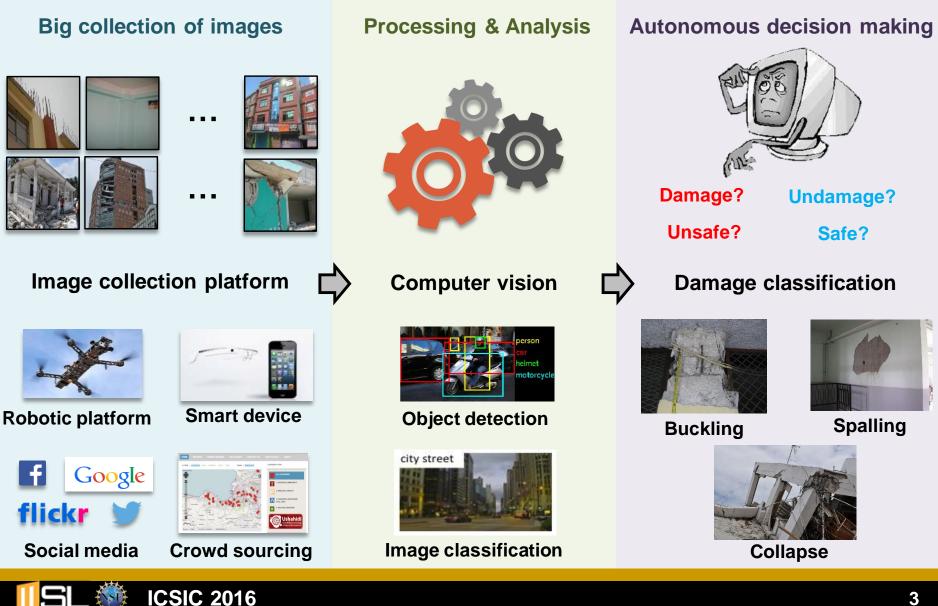
Chul Min Yeum¹, Shirley J. Dyke^{2,1}, Julio Ramirez¹, and Bedrich Benes³

¹Lyles School of Civil Engineering, Purdue University, United States ²School of Mechanical Engineering, Purdue University, United States ³School of Computer Graphics Technology, Purdue University, United States

Aftershock of Nepal Earthquake

http://theconversation.com/nepal-earthquake-such-huge-aftershocks-are-rare-41833

Post-Disaster Damage Evaluation by Incorporating Big Visual Data



Objective

Develop a **<u>post-disaster evaluation method</u>** through autonomous <u>**big**</u> visual data analysis that will support decision-making regarding safety of civil structures.

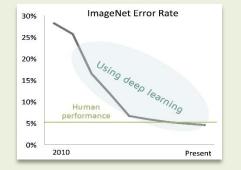
Approach

Implement and develop computer vision methods capable of detection, classification, and evaluation of big visual data using recent <u>deep convolutional neural network</u> algorithms.

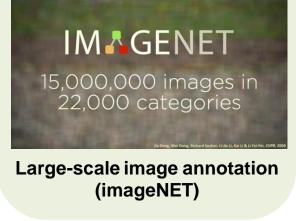
Outcome

Demonstrate and validate the methods using **large-scale real-world** images collected from past events.

Several Great Opportunities for the Research



Convolutional neural network



Deep learning for computer vision

Earthquake data clearing (EERI)

Vast number of earthquake reconnaissance reports

Available existing data

Crisis map (Haiti earthquake in 2011)

Drone mapper (Nepal earthquake in 2015)

Advanced data collection platform

Deep Convolutional Neural Network

Object segmentation

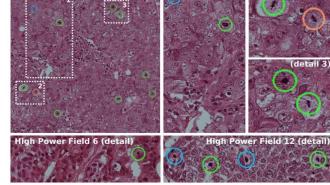
Drone navigation

ligh Power Field 5

ABCDEFG HIJKLMNO PQRST

ABCDEFGHIJ KLMNOPQRST

character recognition



detail

Mitosis detection

Self-driving

(detail 2)

Number of images: 66,974 (documented) + more than 20,000 (still documenting)

Event (disaster): Turkey earthquake (1999), Peru earthquake (2007), Haiti earthquake (2010), Nepal earthquake (2015), Taiwan earthquake (2016), Hurrican at Florida, USA (2004), Tornado at Greensburg, USA (2007), L'Aquila earthquake in Italy (2009), Chile earthquake (2010) etc.

Source: CrEED at Purdue University (USA), EUCentre (Italy), Instituto de Ingenieria UNAM (Mexico), NIST (USA), FEMA (USA), individual contributors.

Copyright: Public (82.0 %) and Unknown (18.0%).

Sample Data in Our Database

Haiti earthquake in 2010 (3,439 images)

L'Aquila (Italy) earthquake in 2009 (414 images)

Florida hurricanes in 2004 (1,178 images)

Nepal earthquake in 2015 (10,490 images)

Taiwan earthquake in 2016 (First-person view video data)



Implementation of Damage Classification : Collapse and Spalling Detection



Collapse

Instance of a structure falling down or in.

ICSIC 2016

Spalling

Break off in fragments

Ground Truth Annotation of Collapse and Spalling

Collapse

Spalling

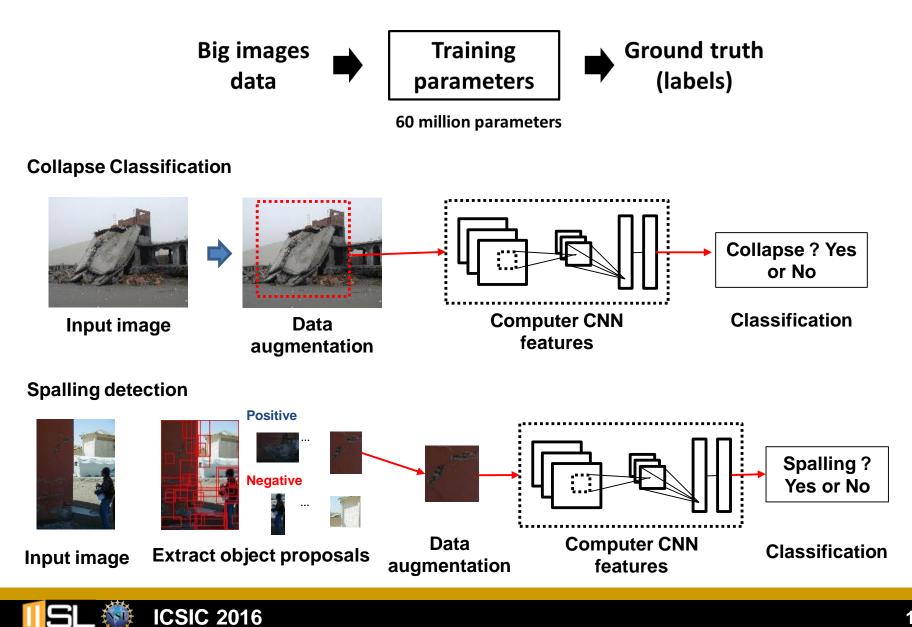
Image showing that the buildings or building components

- lost their original shapes
- produce a large amount of debris
- are not serviceable or accessible

Image including

- exposed masonry areas in a wall due to cracking followed by flaking
- exposed rebar in a columns
- small section lose due to large cracking in a concrete wall

Deep Convolutional Neural Network



Annotation of Collapse and Spalling

Image annotation among ~67,000

Collapse image annotation: <u>1,918 images</u>

Spalling area annotation: <u>1,086 images</u>

Non-collapse images: <u>3,427 images</u>

CNN architecture

- **CNN framework (library)**
- # of images with/without collapsing damage
- # of images with spalling damage
- Batch division for spalling detection
- Ratio of training, validation and testing
- # of images in a batch size
- Training time (spalling detection)
- Training time (collapsing detection)

- : Alexnet for binary classification
- : MatCovnet (CNN for Matlab)
- : 1,850/ 3,420 images
- : 1086 images (21,932/1,617,713 windows)
- : 0.3/0.7 (positive/negative)
- : 0.5, 0.25, and 0.25
- : 512
- : 6 hours/epoch (20 epoch) using 1 gpu
- : 0.1 hour/epoch (300 epoch) using 1 gpu

		Predicted Value	
		Positive (P')	Negative (N')
Actual Value	Positive (P)	True Positive (TP)	False Negative (FN)
	Negative (N)	False Positive (FP)	True Negative (TN)

- True positive (TP) = correctly identified (e.g. Collapse correctly identified as collapse)
- False positive (FP) = incorrectly identified (e.g. Non-collapse incorrectly identified as collapse)
- True negative (TN) = correctly rejected (e.g. Non-collapse incorrectly identified as non-collapse)
- False negative (FN) = incorrectly rejected (e.g. Collapse correctly identified as non-collapse)

Positive predictive value (= precision)

True positive rate (= recall)

$$PPV = TP/(TP + FP)$$

$$TPR = TP/P = TP/(TP + FN)$$

Accuracy

$$ACC = (TP + TN)/(TP + FP + FN + TN)$$

Result: Collapse Classification

Result: Collapse Classification (Continue)

Example: Collapsing Building Classification using Web Images

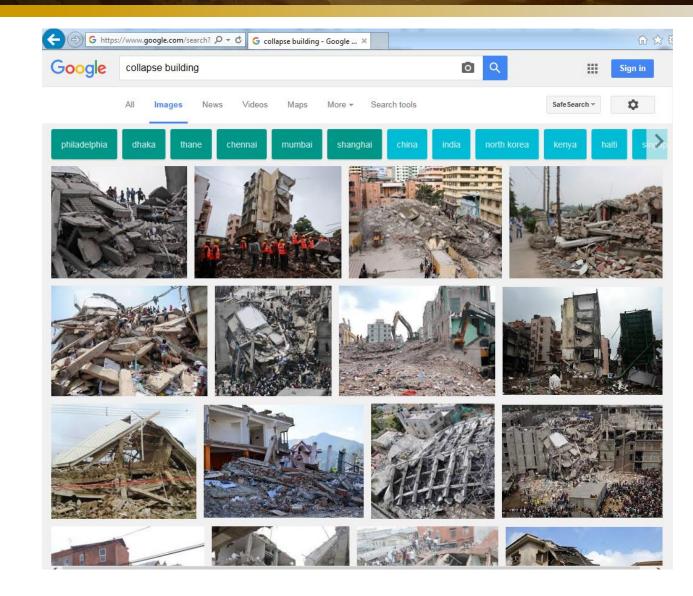
Keywords

Collapse building Collapse buildings Collapsing building Collapsed building Collapsed building

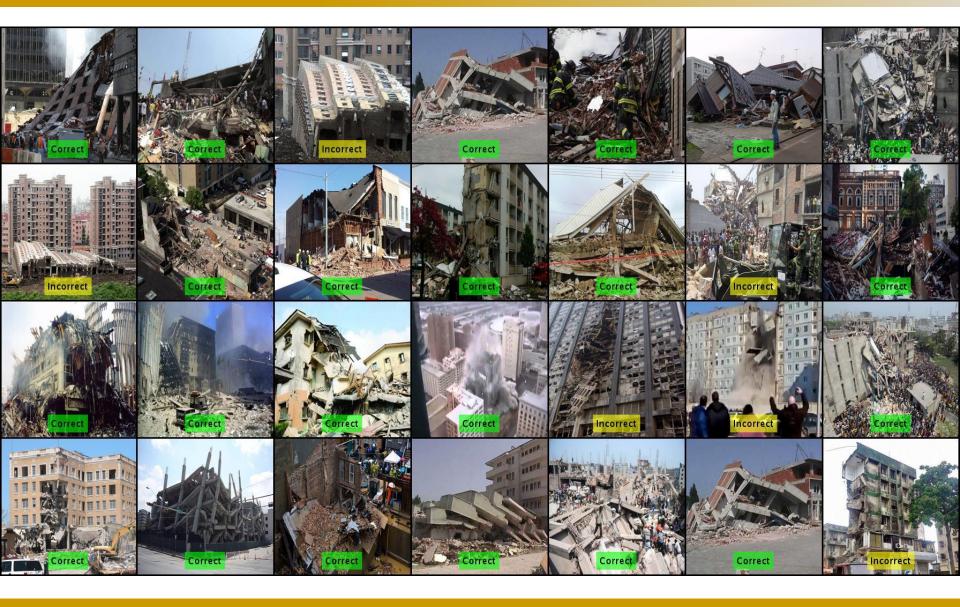
(64 downloadable limits)

Correct detection: 249 images among 315 image

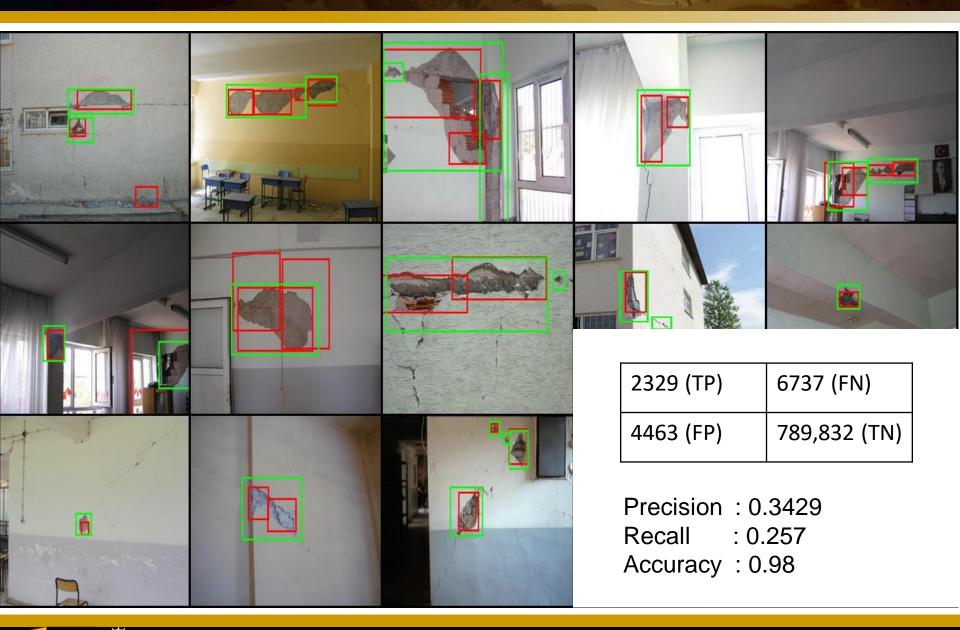
Recall: 79%



Example: Collapsing Building Classification using Web Images



Result: Spalling Detection on the Images having Spalling



Result: Spalling Detection on the Images having Spalling (Continue)

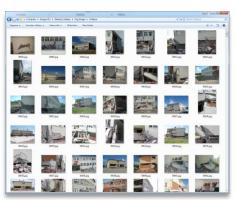
- Automated post-disaster image classification is developed by processing and analyzing big visual data.
- □ The method is demonstrated on a specific example classification focused on collapse classification and spalling detection.
- However, the general method can be applied to other civil applications that use largescale visual data. In the future we plan to incorporate and validate a broader array of damage evaluation methods for broader application.

Acknowledgement

- CDS&E (NSF) ???
- CREED (Center for Earthquake Engineering and Disaster Data) at Purdue
- EERI and CEISMIC
- EUCentre (Pavia, Italy),
- Instituto de Ingenieria, UNAM (Mexico)
- FEMA, USA

FIND CONTRIBUTOERS: WE ARE COLLECTING YOUR VALUABLE IMAGES

ICSIC 2016



Ontology: Annotation of Earthquake Reconnaissance Images

Motivation

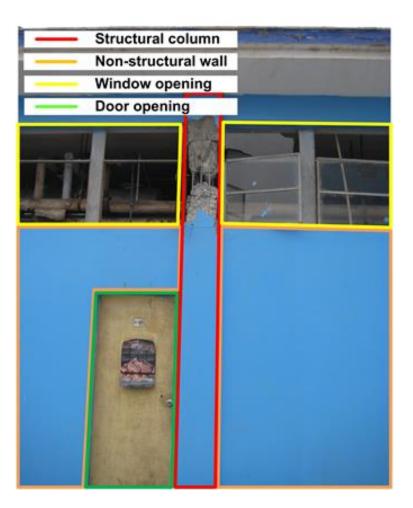
No image annotation structure (scheme) for disaster research and evaluation

Objective

Design domain-oriented visual data annotation structures to extract informative visual contents needed for evaluating damage (conducting domain-applications)

Contribution

Establish large-scale image annotation database



Spalling on a captive column

