Structured Annotation of Semantic Contents on Images from Earthquake Reconnaissance

C.M. Yeum¹, S. J. Dyke^{2,1}, J. Ramirez¹, T. Hacker³, S. Pujol¹, C. Sim⁴

¹ Lyles School of Civil Engineering, Purdue University, United States
 ² School of Mechanical Engineering, Purdue University, United States
 ³ Computer and Information Technology, Purdue University, United States
 ⁴ Civil Engineering, University of Nebraska, United States

Overview of Post-Disaster Damage Evaluation by Incorporating Big Visual Data

A large collection of images from reconnaissance mission

Current visual data classification

Various types, size, contents

New visual data classification

Processing

Autonomous image classification

Computer vision

Spalling

Turkey, 2003

Taiwan, 2016

Nepal, 2015 Ecuador, 2017 Images from at datacenterhub.org

Description

"Reinforced concrete shear wall has longitudinal crushing, spalling at height of the wall, and buckling of vertical reinforcement at the boundary" (Moehle et al., 2011)

- What should be known to understand the content of the image?
- How to annotate such information in a structured way?

Overview of the Proposed Image Annotation Method

Earthquake Image Ontology

<u>Feature 1</u> <u>Target 1</u> (Object property) <u>Feature 2</u> <u>Target 2</u>

- (F1 and T1), (Object property), and (F2 and T2) represent the subject, verb, and object or adjective, respectively).
- Feature 1 and Feature 2 would contain a class from *Feature* or *Damage*,
- Target 1 and Target 2 would contain a subclass from *Target* or *Damage*
- All fields are not necessarily required in such a statement. However, in each statement, annotators have to enter T1, which is the subject of the statement.

Annotated information in the template is saved as triples.

Annotations of Real-World Earthquake Images

Image 1: Description: Vertical cracks along the Orthogonal Wall (Italy, 1998) Statements: (F1: Orthogonal, T1: Wall, F2: Vertical, T2: Cracking) Triples: (Wall – hasDamage – Cracking), (Wall – hasShape – Orthogonal) and (Cracking – hasDirection – Vertical)

Image 2: Description: Failure of an unreinforced masonry wall in a building (USA, 1989) Statements: (F1: UnreinforcedMasonry, T1: Wall, F2: Failure) and (T1: Wall, T2: Building) Triples: (Wall – hasMaterial – UnreinforcedMasonry), (Wall – hasDamage – Failure) and (Wall – isLocatedAt – Building)

Image 3: Description: Collapse of a tilt–up bearing wall (1994, Northridge earthquake) Statements: (F1: Collapsing, T1: TiltWall) Triples: TiltWall – hasDamage – Collapsing

Annotations of Real-World Earthquake Images (Continue)

Image 4: Description: Failed captive column in the basement (1999, Turkey earthquake) Statements: (F1: Failure, T1: CaptiveColumn, T2: Basement) Triples: (CaptiveColumn – hasDamage – Failure) and (CaptiveColumn – isLocatesdAt – Basement)

Image 5: Description: Soft story failure (2015, Nepal earthquake) Statements: (F1: SoftStory, T1: Building) Triples: Building – hasDamage – SoftStory
Image 6: Description: Shear failure reinforced concrete column next to collapsed masonry wall (2015, Nepal earthquake) Statements: (F1: ShearFailure, T1: Column, F2: Collapsing, T2: Wall) and (F1: ReinforcedConcrete, T1: Column, F2: Masonry, T2: Wall) Triples: (Column – isLocatedNext – Wall), (Column – hasDamage – ShearFailure), (Wall – hasDamage – Collapsing), (Column – hasMaterial – ReinforcedConcrete) and (Wall – hasMaterial – Masonry)

Query 1. Which image has a collapsed wall? Query 2. Which image has a failure? Query 3. Which damaged object is located in the basement?

DL query:		
Query (class expression)		
Image and hasObject some (Wall and hasDamage some Collapsing)		
Execute Add to ontology		
Query results		
Instances (2)	Super classes	
♦Image3 👩	Ancestor classes	
♦Image6 💿	Equivalent classes	
	Subclasses	
	Descendant classes	
	✓ Individuals	

DL query:	0800
-Query (class expression) Object and (hasDar Damage and isLoca Basement)	nage some tedAt some
Captive Column	Super classes
4	 Equivalent classes Subclasses Descendant classes Individuals

Image 2

Image 3

Image 4

Image 5

Image 6

Image 1

Autonomous detection, classification, and evaluation of visual data that will support scientific research and decision-makring in the filed using <u>deep</u> <u>convolutional neural network</u> algorithms.

Deep Convolutional Neural Network (CNN)

Object segmentation

Drone navigation

Mitosis detection

Image Classification

Object Detection

Collapse

Building façade

Column

Spalling

A Class of an image

Class and location of sub-region within each image

Deep Convolutional Neural Network for Image Classification and Object Detection

Preparation of training data

Large number of images in database

Ground-truth labeled image

Spalling/Flaking

Collapse

Façade

A process of training a binary classifier

Post-Event Reconnaissance Image Database

L'Aquila (Italy) earthquake

in 2009 (414 images)

Nepal earthquake in 2015 (10,490 images)

Florida hurricanes in 2004 (1,178 images)

Haiti earthquake

in 2010 (3,439 images)

Demonstration of the Techniques: Collapse Classification and Spalling Detection

Collapse

Instance of a structure falling down or in.

16WCEE

Spalling

Break off in fragments

15

Ground Truth Annotation of Collapse and Spalling

Collapse

Image showing that the buildings or building components

- lost their original shapes
- produce a large amount of debris
- are not serviceable or accessible

Image including

- exposed masonry areas in a wall due to cracking followed by flaking
- exposed rebar in a columns
- small section lose due to large cracking in a concrete wall

Configuration of Training and Testing (Collapse Classification)

CNN architecture

- **CNN framework (library)**
- # of images with/without collapsing damage
- Ratio of training, validation and testing
- # of images in a batch size
- Training time (collapsing detection)

- : Alexnet for binary classification
- : MatCovnet (CNN implementation in Matlab)
- : 1,850/ 3,420 images
- : 0.5, 0.25, and 0.25
- : 256
- : 0.1 hour/epoch (300 epoch) using 1 GPU

Samples of Images with the Predicted Classes

on-collans

16WCEE

Non-collapse

Non-collaps

Non-collapse

Collapse

Precision : 0.862 (TP/(TP+FP))

18

Configuration of Training and Testing (Spalling Detection)

CNN architecture

of images with spalling/ of spallings
Ratio of training, validation and testing
of object proposals in each image
of test images (# of spalling's for testing)
A total number of object proposals
Intersection-over-union (IoU) for positive proposals
Batch division for spalling detection
of images in a batch size
Training time (spalling detection)

- : Alexnet for binary classification
- : 1,086 images having 3,158 spalling
- : 0.75 (0.7/0.3), and 0.25 (815 / 271 images)
- : 2,000 ~ 4,000 (on 512 px)
- : 217 (814)
- : 65,652/2,075,453 (pos/neg) for training
- : 0.3
- : 0.3/0.7 (positive/negative)
- : 512
- : 6 hours/epoch (20 epoch) using 1 gpu

Positive

Negative

Samples of Spalling Detection

16WCEE

Object proposals

59.39% of true-positive (9,772/16,454 object proposals)

1.7% of false-negative (11,965/687,860 object proposals)

Final detection

40.48% of true-positive (619/1529)

62.16% of detection rate (506/814)

- □ We propose an ontology and annotation tool that enables documentation and retrieval of visual semantic contents in earthquake images.
- □ The proposed method can transform the meaning of original descriptions into a searchable form using triples to future retrieval based on visual contents on images.
- This method represents a major step forward toward understanding earthquake images in an automated way by providing quality data for training the deep learning algorithm.

Acknowledgement

- National Science Foundation under Grant No. NSF-CNS-1035748
- CREED (Center for Earthquake Engineering and Disaster Data) at Purdue
- EERI and CEISMIC
- EUCentre (Pavia, Italy),
- Instituto de Ingenieria, UNAM (Mexico)
- FEMA, USA

16WCEE

