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Overview of Post-Disaster Damage Evaluation by Incorporating Big

Visual Data
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Motivation: How do We Annotate Descriptive Information?

Description

“Reinforced concrete shear wall has
longitudinal crushing,

, and buckling of
vertical reinforcement at the

poundary” (Moehle et al., 2011)

e What should be known to understand the content of the image?

e How to annotate such information in a structured way?
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Overview of the Proposed Image Annotation Method
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Earthquake Image Ontology
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Image Annotation Template

Featurel Targetl (Object property) Feature?2 Target?2

« (F1andT1), (Object property), and (F2 and T2) represent the subject, verb, and
object or adjective, respectively).

 Feature 1 and Feature 2 would contain a class from Feature or Damage,

» Target 1 and Target 2 would contain a subclass from Target or Damage

» All fields are not necessarily required in such a statement. However, in each

statement, annotators have to enter T1, which is the subject of the statement.

Annotated information in the template is saved as triples.

SV 16WCEE



Annotations of Real-World Earthquake Images

Image 1: Description: Vertical cracks along the Orthogonal Wall (Italy, 1998)
Statements: (F1: Orthogonal, T1: Wall, F2: Vertical, T2: Cracking)
Triples: (Wall — hasDamage — Cracking), (Wall — hasShape — Orthogonal) and (Cracking
— hasDirection — Vertical)

Image 2: Description: Failure of an unreinforced masonry wall in a building (USA, 1989)
Statements: (F1: UnreinforcedMasonry, T1: Wall, F2: Failure) and (T1: Wall, T2: Building)
Triples: (Wall — hasMaterial — UnreinforcedMasonry), (Wall — hasDamage — Failure) and
(Wall — isLocatedAt — Building)

Image 3: Description: Collapse of a tilt—up bearing wall (1994, Northridge earthquake)

Statements: (F1: Collapsing, T1: TiltWall)
Triples: TiltWall — hasDamage — Collapsing




Annotations of Real-World Earthquake Images (Continue)

Image 4: Description: Failed captive column in the basement (1999, Turkey earthquake)
Statements: (F1: Failure, T1: CaptiveColumn, T2: Basement)
Triples: (CaptiveColumn — hasDamage — Failure) and (CaptiveColumn — isLocatesdAt —
Basement)
Image 5: Description: Soft story failure (2015, Nepal earthquake)
Statements: (F1: SoftStory, T1: Building)
Triples: Building — hasDamage — SoftStory
Image 6: Description: Shear failure reinforced concrete column next to collapsed masonry wall
(2015, Nepal earthquake)
Statements: (F1: ShearFailure, T1: Column, F2: Collapsing, T2: Wall) and (F1.:
ReinforcedConcrete, T1: Column, F2: Masonry, T2: Wall)
Triples: (Column — isLocatedNext — Wall), (Column — hasDamage — ShearFailure), (Wall —
hasDamage — Collapsing), (Column — hasMaterial — ReinforcedConcrete) and (Wall —
hasMaterial — Masonry)
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Evaluation of the Proposed Approach for Image Retrieval

Query 1. Which image has a collapsed wall?
Query 2. Which image has a failure?

Query 3. Which damaged object is located in the basement?

Query (class expression)

Image and hasObject some (Wall and
hasDamage some Caollapsing)

| Executs | | Add to ontology |

Query results
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Query (class expression)
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What are the Next Step?

Automated
processing

Description
“Reinforced concrete shear wall has
longitudinal crushing,

, and buckling of
vertical reinforcement at the

boundary” (Moehle et al., 2011)

Autonomous detection, classification, and evaluation of visual data that will

support scientific research and decision-makring in the filed using deep

convolutional neural network algorithms.
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Deep Convolutional Neural Network (CNN)
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Examples of Image (Scene) Classification and Object:Detection

Image Classification Object Detection

Collapse Building fagade Column Spalling

Class and location of sub-region
within each image

A Class of an image




Deep Convolutional Neural Network for Image Classification and

Object Detection

Preparation of training data

Large number of images in Ground-truth labeled image
database

Positive
‘ L = :

Negative

Computer CNN
Ground-truth image features

Corresponding
label




Post-Event Reconnaissance Image Database

Image Resource (83,983) Types of Disaster (83,983)

B Earthquake
B Hurricane

Tornado
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Haiti earthquake L’Aquila (Italy) earthquake  Florida hurricanes in 2004  Nepal earthquake in 2015
in 2010 (3,439 images) in 2009 (414 images) (1,178 images) (10,490 images)




Demonstration of the Techniques: Collapse Classification and Spalling
Detection

Collapse Spalling

Instance of a structure falling down or in. Break off in fragments
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Ground Truth Annotation of Collapse and Spalling

Collapse

Image showing that the buildings or Image including

building components  exposed masonry areas in a wall due to
* lost their original shapes cracking followed by flaking

e produce a large amount of debris e exposed rebar in a columns

e are not serviceable or accessible « small section lose due to large cracking

in a concrete wall
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Configuration of Training and Testing (Collapse Classification)

CNN architecture : Alexnet for binary classification

CNN framework (library) : MatCovnet (CNN implementationin Matlab)
# of images with/without collapsing damage : 1,850/ 3,420 images

Ratio of training, validation and testing : 0.5,0.25,and 0.25

# of images in a batch size : 256

Training time (collapsing detection) : 0.1 hour/epoch (300 epoch) using 1 GPU

Collapse building \Damage on a building Irrelevant images Undamaged building
. J

Positive Negative
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Samples of Images with the Predicted Classes

] p
Non-collapse "8 Non-collapse
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417 (TP)

67 (FP) 788 (TN)

True-positive: 90.26%
True-negative: 92.16%
Precision :0.862 (TP/(TP+FP))




Configuration of Training and Testing (Spalling Detection)

CNN architecture

# of images with spalling/ of spallings

Ratio of training, validation and testing

# of object proposalsin each image

# of test images (# of spalling's for testing)

A total number of object proposals
Intersection-over-union (loU) for positive proposals
Batch division for spalling detection

# of images in a batch size

Training time (spalling detection)

. Alexnet for binary classification

: 1,086 images having 3,158 spalling

: 0.75(0.7/0.3),and 0.25 (815 / 271 images)
: 2,000 ~ 4,000 (on 512 px)

: 217 (814)

. 65,652/2,075,453 (pos/neg) for training
0.3

: 0.3/0.7 (positive/negative)

: 512

: 6 hours/epoch (20 epoch) using 1 gpu

Positive

Negative
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Samples of Spalling Detection

‘

Object proposals

59.39% of true-positive (9,772/16,454 object proposals)
1.7% of false-negative (11,965/687,860 object proposals)

Final detection

40.48% of true-positive (619/1529)
62.16% of detection rate (506/814)
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Conclusion

0 We propose an ontology and annotation tool that enables documentation and

retrieval of visual semantic contents in earthquake images.

O The proposed method can transform the meaning of original descriptions into a

searchable form using triples to future retrieval based on visual contents on images.

O This method represents a major step forward toward understanding earthquake

images in an automated way by providing quality data for training the deep learning

algorithm.
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Questions and Answers
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