Rapid, Automated Post-Event Image Classification and Documentation

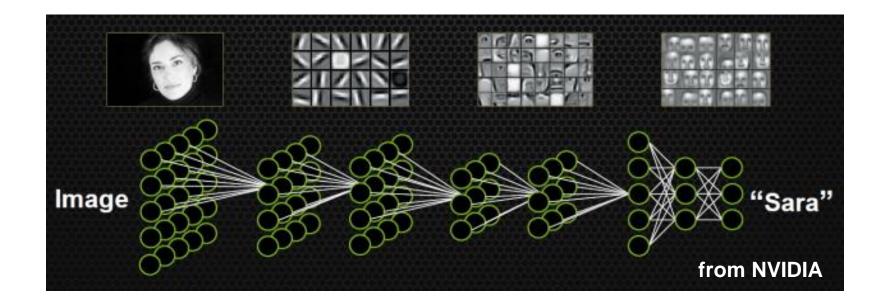
Chul Min Yeum¹, **Shirley J. Dyke**¹, Bedrich Benes², Thomas Hacker³, Julio Ramirez¹, Alana Lund¹, and Santiago Pujol¹

¹ Lyles School of Civil Engineering, Purdue University, United States ² School of Computer Graphics Technology, Purdue University, United States ³ Computer and Information Technology, Purdue University, United States

Motivation of the Research

Reconnaissance mission

Building and Building Components


Metadata

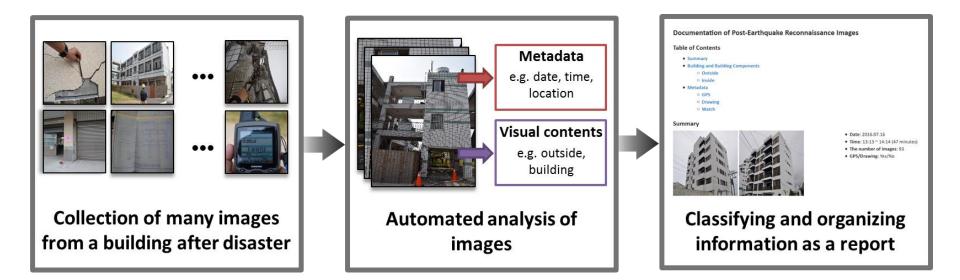
Field engineers collect not only damaged building and its components but also metadata as a form a images

Deep Convolutional Neural Networks (CNN)

Object segmentation

Drone navigation

Mitosis detection



Past Results: Classification of Collapse Images

Overview of the Developed Technique

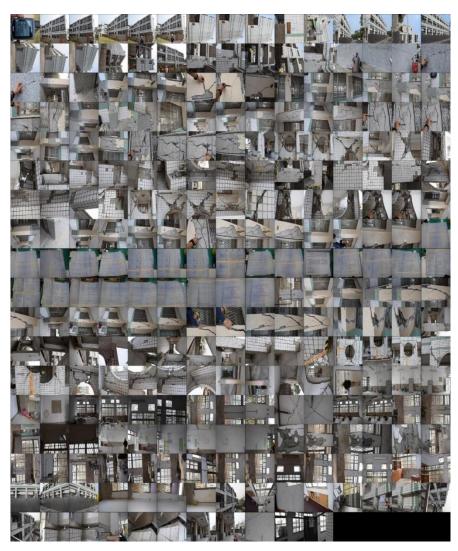
How to support field engineers to readily find and analyze images

Develop an enabling technique to <u>automatically extract and analyze visual</u> <u>contents</u> of the collected images and integrate them as a <u>report</u> so that engineers can easily access and document these images in the field.

A Real-World Example (Images were collected from a single building after 2016 Taiwan Earthquake)

Event: Taiwan Earthquake

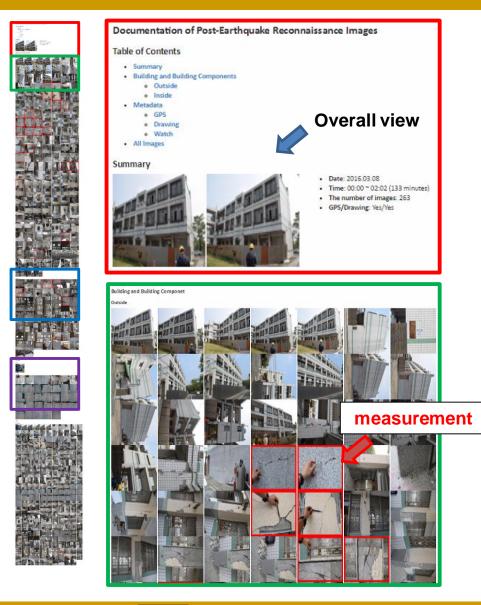
Data: February 6, 2016


Location: Yujing Junior High School

of images: 266

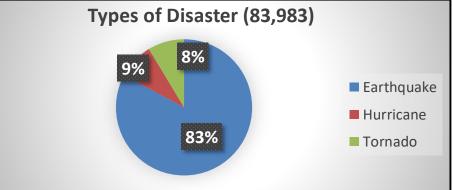
Damage: Structural damage (S) and Masonry

wall damage (M)


[L= Light, M=Moderate, S=Severe]

All images collected from a single building

Final Outcome of the Developed Technique

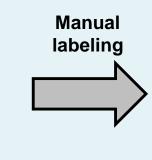


Post-Event Reconnaissance Image Database

in 2009 (414 images)

(1,178 images)

Haiti earthquake in 2010 (3,439 images)



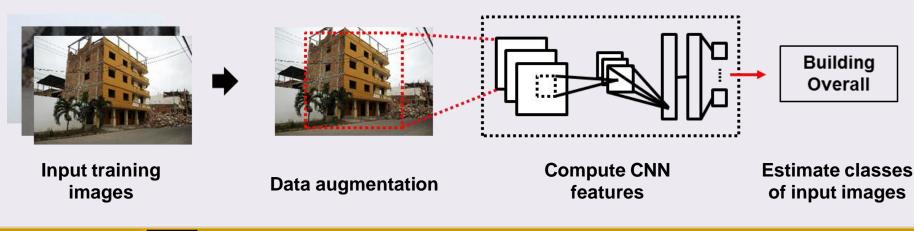
2017 (412 images)

Deep Convolutional Neural Network for Image Classification

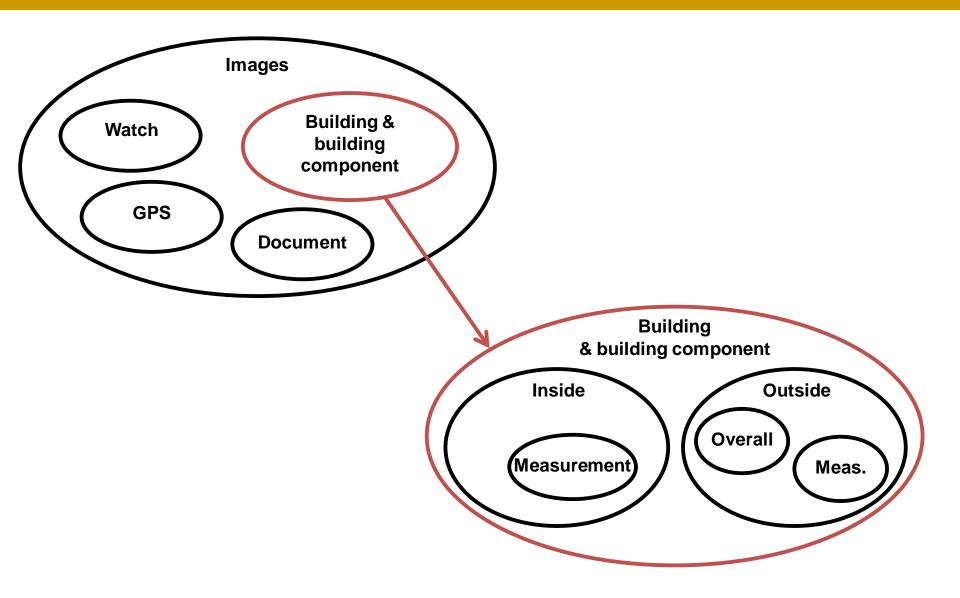
Preparation of training data

Large number of images in database

Ground-truth labeled image


Drawing

Overall view


Inside

Training of classifiers

Structure of the Image Category

Sample Images of Each Category (Ground-truth Labeling)

Outside (OUT)

Inside (IN)

Overall View (OV)

Recording Metadata

Drawing (DWG)

Watch (WAT)

from google

Measurement (MEAS)

GPS (GPS)

Building and Building Components (BBC)

Configuration of Training and Testing

CNN architecture
CNN framework (library)
Ratio of training, validation and testing
of images in a batch size

- : Alexnet for multiclass/binary classification
- : MatCovnet (CNN implementation in Matlab)
- : 0.5, 0.25, and 0.25
- : 256

Classification		Mult	iclass		Bin	ary	Binary	Binary		
Category	BBC	GPS	WATCH	DWG	IN	OUT	OV	MEAS		
# of labelled images	16,747	835	320	3,283	6,407	9,650	1,531	690		

Legend: BBC: building and building components;

GPS: GPS; WATCH: watch; DWG: drawing;

IN: inside; OUT: outside;

OV: Overall view; MEAS: Measurement

Sample Report Generated using the Developed (Original Collection)

Sample Report Generated using the Developed Technique (Continue)

☐ 🕗 🗾 ∓ out File Home	t Share View							2	ð	× ~ 0
$\leftrightarrow \rightarrow \uparrow \uparrow$	> This PC > Desktop > journal_Aut	to_Class_Recon_Img > out	t		· · · · · · · · · · · · · · · · · · ·	ð Si	Search out			ρ
Name	~	Date modified	Туре	Size						
EQ_BLDG_ECU	A2016_DHUB_PD_1523_124229	7/25/2017 9:15 PM	Filefolder							
	/2016_DHUB_PD_1267_94585	7/27/2017 12:37 PM	File folder							

Ecuador Earthquake, 2016

0

11

Classification	Multiclass B					ary	Binary	Binary
Category	BBC	GPS	WATCH	DOC	BIN	BEX	OV	MEAS
# of labelled images	16,747	835	320	3,283	6,407	9,650	1,531	690
# of testing images	4,126	187	80	827	1,609	2,337	360	172
Precision	99.7%	93.8%	86.4%	97.6%	82.2%	90.8%	50.9%	37.4%
Recall	99.1%	97.3%	95.0%	98.7%	87.2%	87.0%	90.0%	79.8%

Acknowledgment

Data Contributions

- Datacenterhub.org (CrEEDD: Center for Earthquake Engineering and Disaster Data at Purdue)
- EUCentre (Pavia, Italy)
- Instituto de Ingenieria, National Autonomous University of Mexico
- FEMA and EERI

Funding

CDS&E: Enabling time-critical decision-support for disaster response and structural engineering through automated visual data analytics. Supported by NSF under Grant No. NSF-1608762

