Automated Damage Evaluation for Big Visual Data Collected from Disaster

Chul Min Yeum

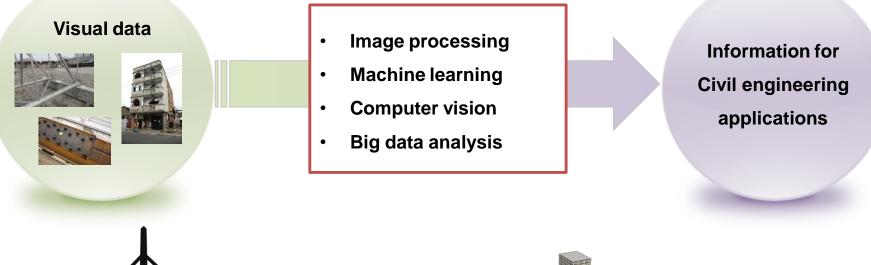
Postdoctoral Researcher

Lyles School of Civil Engineering, Purdue, United States.

10th August, 2017

My Research Interest

Technology



and localization using drone images

Image recognition

Visual data classification for post-disaster images

Motivation of the Research

A large collection of images after disaster

Image collection platform

Robotic platform

flic

Crowd sourcing

Various types, size, contents

New visual data classification

Processing

Autonomous image classification

Computer vision

Spalling

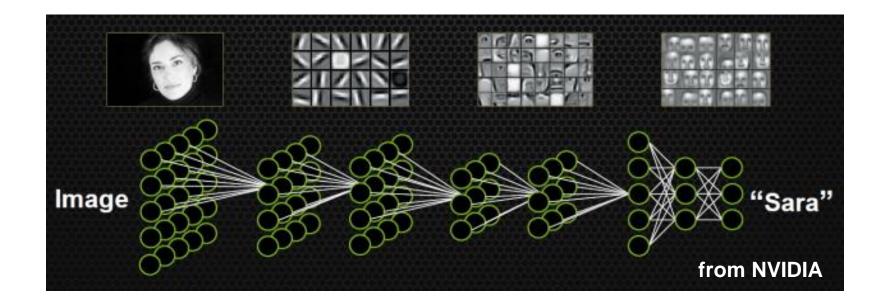
Objective

Develop <u>an image annotation method</u> through autonomous detection, classification, and evaluation of visual data using <u>deep convolutional</u> <u>neural network</u> algorithms.

Contributions

- Successfully implement deep convolutional neural network for postdisaster images.
- Build a large-scale database for real-world disaster images and their ground-truth annotations intended for computer vision research in this area.

Deep Convolutional Neural Network (CNN)



Object segmentation

Drone navigation

Mitosis detection

Deep Convolutional Neural Network for Image Classification and Object Detection

Preparation of training data

Large number of images in database

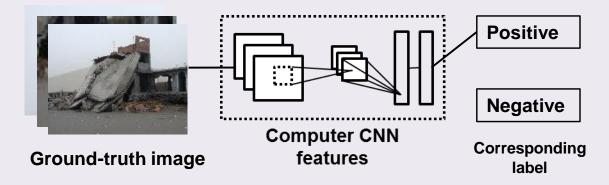
Ground-truth labeled image

Spalling/Flaking

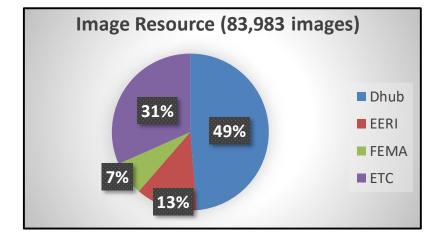
Collapse

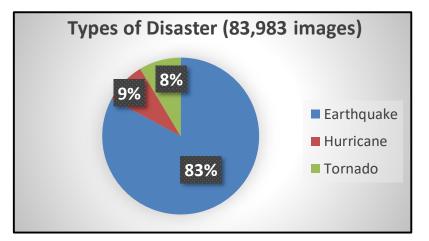
Façade

A process of training a binary classifier



Post-Event Reconnaissance Image Database





L'Aquila (Italy) earthquake

in 2009 (414 images)

Nepal earthquake in 2015 (10,490 images)

Florida hurricanes in 2004 (1,178 images)

Haiti earthquake

in 2010 (3,439 images)

Demonstration of the Techniques: Collapse Classification and Spalling Detection

Collapse

Instance of a structure falling down or in.

Spalling

Break off in fragments

Ground Truth Annotation of Collapse and Spalling

Collapse

Image showing that the buildings or building components

- lost their original shapes
- produce a large amount of debris

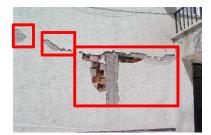


Image including

- exposed masonry areas in a wall due to cracking followed by flaking
- exposed rebar in a columns
- small section lose due to large cracking in a concrete wall

Configuration of Training and Testing (Collapse Classification)

CNN architecture

- **CNN framework (library)**
- # of images with/without collapsing damage
- Ratio of training, validation and testing
- # of images in a batch size
- Training time (collapsing detection)

- : Alexnet for binary classification
- : MatCovnet (CNN implementation in Matlab)
- : 1,850/ 3,420 images
- : 0.5, 0.25, and 0.25
- : 256
- : 0.1 hour/epoch (300 epoch) using 1 GPU

Samples of Images with the Predicted Classes

Configuration of Training and Testing (Spalling Detection)

CNN architecture

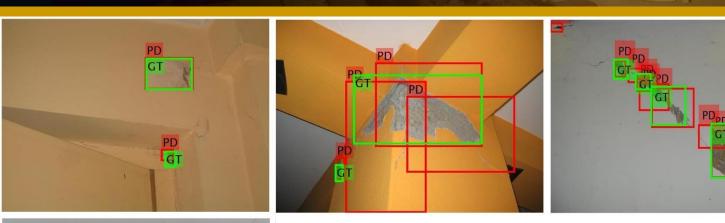
of images with spalling/ of spallings
Ratio of training, validation and testing
of object proposals in each image
of test images (# of spalling's for testing)
A total number of object proposals
Intersection-over-union (IoU) for positive proposals
Batch division for spalling detection
of images in a batch size
Training time (spalling detection)

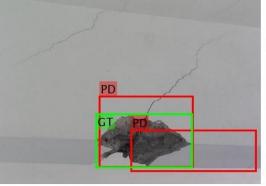
- : Alexnet for binary classification
- : 1,086 images having 3,158 spalling
- : 0.75 (0.7/0.3), and 0.25 (815 / 271 images)
- : 2,000 ~ 4,000 (on 512 px)
- : 217 (814)
- : 65,652/2,075,453 (pos/neg) for training
- : 0.3
- : 0.3/0.7 (positive/negative)
- : 512
- : 6 hours/epoch (20 epoch) using 1 gpu

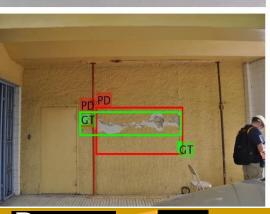
Negative

Positive

Samples of Spalling Detection







Object proposals

59.39% of true-positive (9,772/16,454 object proposals)

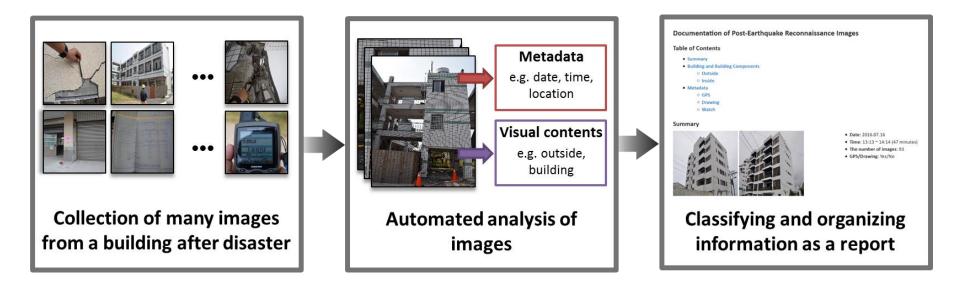
1.7% of false-negative (11,965/687,860 object proposals)

Final detection

40.48% of true-positive (619/1529)

62.16% of detection rate (506/814)

Post-Event Reconnaissance Image Documentation using Automated Classification



How to support field engineers to readily find and analyze images

Chul Min Yeum, Shirley J. Dyke, Benes Bedrich, Thomas Hacker, Julio A. Ramirez, Alana Lund, and Santiago Pujol, "Rapid, Automated Image Classification for Documentation," *submitted to* the 7th Conference on Advances in Experimental Structural Engineering, Pavia, Italy, September 6-8, 2017.

Sample Report Generated using the Developed Technique

Chungwook Sim; Enrique Villalobos; Jhon Paul Smith; Pedro Rojas; Santiago Pujol; Aishwarya Y Puranam; Lucas Laughery (2016), "Performance of Low-rise Reinforced Concrete Buildings in the 2016 Ecuador Earthquake," https://datacenterhub.org/resources/14160.

Sample Report Generated using the Developed Technique (Continue)

			+ – đ)
uto_Class_Recon_Img > out	t		ע ע Search out א
Date modified	Туре	Size	
7/25/2017 9:15 PM	Filefolder		
7/27/2017 12:37 PM	File folder		
	Date modified 7/25/2017 9:15 PM	uto_Class_Recon_Img > out Date modified Type 7/25/2017 9:15 PM File folder 7/27/2017 12:37 PM File folder	Date modified Type Size 7/25/2017 9:15 PIM File folder

Ecuador Earthquake, 2016

0

11

- Automated post-disaster image classification and object detection methods are developed by processing and analyzing big visual data.
- □ The method is demonstrated on a specific example classification focused on collapse classification and spalling detection.
- However, the general method can be applied to other civil applications that use largescale visual data. In the future we plan to incorporate and validate a broader array of damage evaluation methods for broader application.

Acknowledgment

Researchers

- Shirley J. Dyke (Lyles School of Civil Engineering, Purdue University)
- Chungwook Sim (Civil Engineering, University of Nebraska-Lincoln)
- Julio Ramirez (Lyles School of Civil Engineering, Purdue University)
- Benes Bedrich (Computer Graphics Technology, Purdue University)
- Santiago Pujol (Lyles School of Civil Engineering, Purdue University)
- Alana Lund (Lyles School of Civil Engineering, Purdue University)

Data Contributions

- Datacenterhub.org (CrEEDD: Center for Earthquake Engineering and Disaster Data at Purdue)
- EUCentre (Pavia, Italy)
- Instituto de Ingenieria, National Autonomous University of Mexico
- FEMA and EERI

Funding Agencies

CDS&E: Enabling time-critical decision-support for disaster response and structural engineering through automated visual data analytics Supported by NSF under Grant No. NSF-1608762

Questions and Answers

