Image Scale Estimation Using Surface

Textures for Quantitative Visual Inspection

Presented by: Ju An Park

Co-authors: Chul Min Yeum and Trevor Hyrnyk

Civil and Environmental Engineering

University of Waterloo, Canada

6th Annual Conference on Vision and Intelligent Systems (CVIS 2020) Oral Session 2 (OS2): Nov. 25, 2020

Computer Vision for Smart Structure

Routine visual inspection is mandated to identify and quantify structural defects.

Recent Developments

Several image processing and computer vision techniques have enabled automatic detection of regions-of-interest (**ROIs**)

Hoskere et al. 2020

Existing or Potential Approaches for Quantification

Ruler/marker-based measurement

Stereo camera

App-based measurement

Is There an Easier Way to Make Physical Measurements?

Scale?

Key Idea of the Proposed Technique

Objective

CNN-based image scale estimation framework which translate surface textures to an image scale (i.e. pixel/mm).

Advantages

- Only require a single camera
- Can be applied to historical images
- One-time training of a CNN model
- Can be added to existing feature detection processes to enable end-to-end inspection algorithm

Limitations

• Assumes image is taken parallel to the scene (to estimate a single scale).

How to Use the Proposed System

Step 1.Image collection for target region

Step 2.Region-of-interest (ROI) detection

Step 3. Patch extraction of surface texture

Step 5. Quantitative ROI evaluation

Max width: 3 mm Length: 50 mm Area: 100 mm²

Step 4.Image scale estimation using trained CNN model

One-time Training Phase

Note that this is the process to make ground-truth database and train the network.

Step 2. (For each image) Marker detection, scale calculation, and patch extraction

Step 3. CNN model training using patches and their corresponding image scales

Experimental Validation: Test Structures

Pedestrian Bridge (PED) Building Wall (BW) Asphalt Pavement (ASH)

Surface Textures from PED, BW, and ASH

Network Architecture and Loss Function

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \frac{|y - \hat{y}|}{y}$$

Training Details

- SGD optimizer:
 - learning rate: 10⁻⁴
 - decay: 0.9
 - momentum: 0.01
- Texture patch augmentations:
 - Horizontal and vertical flips
 - Minor Rotations
 - Brightness changes ± 10%
- Patch sizes:
 - 100X100 pixels
 - 350X350 pixels
 - 850X850 pixels
- Extract ~50 patches per image

Training Details (Continue)

Patch size training results (PED):

Final Training Dataset:	Dataset	Total Number of Scenes (training/testing)	Total Number of Images (training/testing)
(Using patch size 850X850 pixels)	PED	22 (18/4)	191 (154/37)
	BW	14 (12/2)	434 (352/82)
	ASH	21 (17/4)	182 (149/33)

250

Experiment Results (Scale Estimation)

Any questions?

References

Image sources:

- <u>https://www.facebook.com/Analysis.and.design.of.concrete.Bridges/</u>
- <u>https://www.constructioncanada.net/older-masonry-buildings-benefits-risks-and-design-approaches-for-adding-interior-insulation/</u>
- <u>https://en.wikipedia.org/wiki/Asphalt_concrete</u>
- <u>https://www.dcpu1.com/blog/what-causes-concrete-to-crack/</u>
- <u>https://www.researchgate.net/publication/335446851_Challenges_of_preserving_modernist_concrete</u>
- <u>https://www.researchgate.net/profile/Seda_Oezdemir2/publication/307204713/figure/fig3/AS:400421664378881@1472479372061/Measured-crack-width-allowing-water-infiltration.png</u>
- https://www.amazon.ca/MYNT-Stereo-Camera-Depth-Sensor/dp/B07DD4QZXH

Citations:

- <u>https://www.ontario.ca/laws/regulation/020239</u>
- https://www150.statcan.gc.ca/n1/pub/16-002-x/2009001/tbl/transpo/tbl001-eng.htm
- <u>http://www.mto.gov.on.ca/english/highway-bridges/ontario-</u> <u>bridges.shtml#:~:text=The%20Ministry%20of%20Transportation%20owns,professional%20engineer%20supervises%20all%20inspections</u>.

Paper citations:

- Hoskere, Vedhus, et al. "MaDnet: multi-task semantic segmentation of multiple types of structural materials and damage in images of civil infrastructure."
- An, Yun-Kyu, et al. "Deep learning-based concrete crack detection using hybrid images." Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018. Vol. 10598. International Society for Optics and Photonics, 2018.