# $3 D$ Damage Quantification for Visual Inspection 

Presented By: Rishabh Bajaj ${ }^{1}$

Sriram Narasimhan ${ }^{2}$
1 University of Waterloo, ON N2L 3G1, Canada
2 University of California, Los Angeles, CA 90095, USA

Computer Vision for Smart Structure

## UCLA SRILab

## Background: Visual Inspection

"It is expected that in order to adequately assess the condition of all elements, the inspector should plan to spend at least 2 to 3 hours at a typical bridge site. For large bridges, this time will increase."
-Ontario Structure Inspection Manual (OSIM)


## Background: Advances in Automated Visual Inspection

Several image processing and computer vision techniques have enabled automatic detection and segmentation of regions-of-interest (ROIs)


Image classification


Object classification


Segmentation

## Challenges: Depth Measurement



### 2.2.6 SPALLING

A spall is a fragment, which has been detached from a larger concrete mass.

| Severity |  |
| :---: | :---: |
| Light | - Spalled area measuring less than 150 mm in any direction or less than 25 mm in depth. |
| Medium | - Spalled area measuring between 150 mm to 300 mm in any direction or between 25 mm and 50 mm in depth. |
| Severe | - Spalled area measuring between 300 mm to 600 mm in any direction or between 50 mm and 100 mm in depth. |
| Very Severe | - Spalled area measuring more than 600 mm in any direction or greater than 100 mm in depth. |



## Microsoft Hololens 2



## Real-time Quantitative Visual Inspection using Extended Reality



- Step 1: User selects seed points inside and outside damage region

- Step 3: (optional) If segmentation is inaccurate, add seed points to improve results

- Step 2: Capture image and apply interactive segmentation algorithm

- Step 4: Calculate area of final segmented damage region


## Challenges: Sensors (Limitation of Working Distance and Accuracy)

Infrared (IR) Depth Sensors


| Mode | Resolution | Fol | FPS | Operating range | Exposure time |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NFOV unbinned | $640 \times 576$ | $75^{\circ} \times 65^{\circ}$ | $0,5,15,30$ | $0.5-3.86 \mathrm{~m}$ | 12.8 ms |
| NFOV $2 \times 2$ bir hed (SW) | $320 \times 288$ | $75^{\circ} \times 65^{\circ}$ | $0,5,15,30$ | $0.5-5.46 \mathrm{~m}$ | 12.8 ms |
| WFOV $2 \times 2$ binned | $512 \times 512$ | $120^{\circ} \times 120^{\circ}$ | $0,5,15,30$ | $0.25-2.88 \mathrm{~m}$ | 12.8 ms |
| WFOV unbinned | $1024 \times 1024$ | $120^{\circ} \times 120^{\circ}$ | $0,5,15$ | $0.25-2.21 \mathrm{~m}$ | 20.3 ms |
| Passive IR | $1024 \times 1024$ | N/A | $0,5,15,30$ | N/A | 1.6 ms |

LiDAR


Range Precision (1 $\sigma$ @ 20m)

Severity
Light - Spalled area measuring less than 150 mm in any direction or less than 25 mm in depth.
Medium - Spalled area measuring between 150 mm to 300 mm in any direction or between 25 mm and 50 mm in depth.
Severe - Spalled area measuring between 300 mm to 600 mm in any direction or Spalled area measuring between 300 mm to 600 mm in any direction or
between 50 mm and 100 mm in depth.

Very - Spalled area measuring more than 600 mm in any direction or greater than 100 mm in depth.

## Objective and Contributions

## Objective

- Develop a technique to quantify spalling damage in 3D


## Advantages

- Quantification and measurements done in real world scale
- Tested up to a range of 5 m
- Measurement of depth of damage
- Invariant to the surface material
- Agnostic to the hardware used to collect data
- Can be used to classify defects as per OSIM severity to enable end-to-end inspection for such defects


## Proposed Approach

## Reconstruction in 3D space

- Structure from Motion (SfM): Estimate three-dimensional structures from two-dimensional image sequences



## Segmentation

- Segmentation of the damage region by inspectors with a MR headset or automated algorithms



## Quantification

- Computation of the volume from the triangular mesh model of the damage region
- 3D Meshing of the defect



## Structure-from-Motion with a Known Scale

Camera Position ( $p_{x}, \mathrm{p}_{y}, \mathrm{p}_{z}$ ) and Orientation $\left(\mathrm{R}_{x}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\right)$


$$
\mathrm{p}_{1}, \mathrm{R}_{1}
$$



## Experimental Setup: Fabricating Spalling Damage Specimen using a 3D printer

Actual On-Site Spalling


3D Print of the CAD Model



CAD Model of the On-Site Spalling


## Known-dimensional Specimen for Experimental Validation



$$
\begin{aligned}
& V_{\text {cuboid }}=l \times b \times h=5000 \mathrm{~cm}^{3} \\
& V_{\text {solid }} \approx 4664 \mathrm{~cm}^{3} \\
& V_{\text {damage }}=V c u_{\text {boid }}-V s o_{\text {lid }} \\
& V_{\text {damage }}=336.049 \mathrm{~cm}^{3}
\end{aligned}
$$

Known Volume of damage (Ground Truth)

Step 1. Take multiple images from the scene with damage using HL2
Step 2. Perform SfM to create the 3D point cloud of the scene
Step 3. Perform segmentation to identify the boundary of a damage region
Step 4. Perform meshing the damage region to create its 3D model
Step 5. Find the hypothetical undamaged flat plane (surface)
Step 6. Compute the volume of the damage region

## Step 1. Data Collection Using a Hololens 2



Photo capture via a gesture control


Image collection from different angles

Step 2. Point Cloud Model Reconstruction Using Structure From Motion


## Step 3. Segmentation



## Step 4. Meshing



3D reconstruction of damage

## Step 5. Hypothetical Plane Fitting



Point cloud from damage

## Step 6. Volume Calculation



## Laboratory Test Result



Volume Estimation Accuracy (Repeatability)


## On-Site Experiments: Test Structure

| Structure ID | Structure <br> Name | Structure Subtype | Location Description | Install Date | Number of Spans | Deck Length | Deck Width | Deck <br> Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2805_1 | Homer <br> Watson <br> Boulevard/ <br> Balzer <br> Creek | Beam/Girder | 0.73 km <br> North of Bleams Rd | $\begin{aligned} & 1 / 1 / 197 \\ & 8 \end{aligned}$ | 1 | 18.3 | 11.2 | 204.9 |



Mnyeranhan/4



## Data Collection Using Hololens 2



## Interactive Segmentation of Damage

Step 1: User selects seed points inside and outside damage region

Step 2: Capture image and apply interactive segmentation algorithm


## 3D Reconstruction



## Damage Quantification Result

Max. depth of damage: 1.97 cm
Plane equation: $0.01010 x+-0.01281 y+0.99987 z+-251091=0$
n(inner pcd points): 1158
Plane inlier ratio: 36.79245283018868 \%

## Spalling Classification as per OSIM



## Thank you! Any Questions?



