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Abstract. We propose a method to segment and quantify visual damage in civil 

infrastructure. A new inspection pipeline is built where an on-site user equipped 

with a mixed reality headset (MRH) can obtain a quantitative measure of the 

volume, and size of damage in concrete. We define the volume of damage as 

the space enclosed within the concave defect and a hypothetical flat plane that 

would have been present on the undamaged surface. A deep learning-based in-

teractive segmentation algorithm deployed in the MRH is used to segment the 

defect in the structure. Structure from Motion is applied to get a detailed point 

cloud reconstruction of the damage using a series of images captured by the 

MRH on-site. The segmentation mask is applied to categorize points in the 

point cloud inside and outside the damage. A dense three-dimensional mesh is 

created for the deformed region using the mask and selected points. We cali-

brate our meshed model to obtain the scale of damage by utilizing the built-in 

sensors in the MRH. 
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puter vision 

1 Introduction 

Civil infrastructure is often prone to damage and deterioration over a period of ex-

tended use. Large structures such as bridges must be evaluated over a long period [1], 

[2]. A shift towards smarter technologies and integration of machine learning, vision-

based inspection, and artificial intelligence has been observed in recent years [3]. 

Traditionally, surface changes such as spalling, segregation, formation of sand pock-

ets, and scaling in addition to obvious cracks on concrete surfaces are signs of con-

crete distress and deterioration [4]. For example, the Ontario Structural Inspection 

Manual (OSIM) mentions that all bridges, retaining walls, and culverts should be 

inspected biennially within a recommended range of an arm’s length of the element 

[5].  

 

In this study, we propose a methodology to perform an image-based three-

dimensional reconstruction of a damaged region in civil infrastructure components 

and quantify it in terms of its size, volume, and damage segmentation. The proposed 
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methodology requires images and camera poses as inputs. In the context of computer 

vision, a camera pose (or simply pose) contains information about the rotation and 

translation of the camera from the position an image is captured. It acts as a reference 

in terms of the placement of objects while performing reconstructions in 3D. Utilizing 

the workflow developed in this paper, structural inspectors on-site can measure and 

categorize damages as per OSIM [5] in a relatively fast and real-time mannerism. The 

method can be used to identify and measure a common type of damage, spalling, on 

any component in structures. The method is invariant to the material used for the fa-

cade. The method can be deployed in conditions where accessibility is a hindrance 

and reaching within arm’s length distance is not a feasible option. 

 

In this paper, testing and validation of the proposed procedure and technique were 

done by performing laboratory experiments. The proposed method was tested on arti-

ficial spalling damage which was 3D printed from a CAD model. The CAD model 

was prepared from depth-sensing data obtained from an actual spalling which was 

present on a bridge abutment. For evaluation purposes of the proposed method, the 

spalling was unevenly scaled in the depth direction (see Fig. 1). 

 

 

Fig. 1. Spalling damage (left); 3D printed damage (right) 

2 Proposed Approach 

2.1 Overview 

The objective of the proposed damage quantification technique is to make a reliable, 

repeatable, and robust measurement from 3D reconstruction using images and camera 

poses without the need for a dedicated sensor. A photogrammetry technique called 

structure from motion (SfM) is deployed to assist the reconstruction. A damaged 

component is reconstructed using SfM once multiple images along with poses are 

collected. Using existing interactive segmentation techniques that were developed 

previously in our lab [6], binary masks are created to isolate the region of interest 

(ROI) in the reconstructed scene. Our developed algorithm takes the 3D scene recon-

structed using images and poses and the binary masks as inputs. The algorithm then 

performs operations on the scene to compute the volume based on these inputs and 

measures the size of the damage and the volume of the same. Using these metrics, 

spalling damage can be categorized as Light, Medium, Severe, or Very Severe as per 

OSIM recommendations.  
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2.2 3D pointcloud reconstruction using Structure from Motion 

Structure from motion (SfM) is a photogrammetry technique that reconstructs a scene 

in 3D from a series of multiple images of the same scene taken from different view-

points while also simultaneously obtaining the position of the camera (poses). SfM 

has been extensively used by researchers in the field of geomorphic studies [7], per-

forming structural analysis of building components under different load states [8] 

even used to reconstruct entire cities [9]. It has also been used to perform visual in-

spections remotely [10], and large-scale aerial inspections in the field of agriculture, 

geosciences, and environmental disaster management among other uses. The underly-

ing principle in SfM is that by capturing the same scene from multiple viewpoints 

sequentially, keypoints (which are common features across two or more images) can 

be detected. Once these keypoints are detected and matched in multiple images taken 

from different viewpoints, these keypoints (feature points) can be identified in three-

dimensional space as point clouds by analyzing the relationships (change in position) 

between the feature points due to the different camera poses (rotation and translation) 

from which they were captured.  

 

In this study, open-source software called openMVG [11] was used to generate 3D 

point clouds from the input images and poses. A point cloud is a collection of data 

points in 3D space, in our case, the output of the SfM is a colorized point cloud of the 

damage. Hololens2 (HL2) which is an extended reality device from Microsoft was 

used to collect the images (with poses) of a damaged component for this study (see 

Fig. 2).  In practice, an inspector on-site can use the HL2 to collect multiple images 

from different viewpoints of damage (see Fig. 3). Using the algorithm proposed in 

this article quantifies the defect to a high level of accuracy and categorizes them as 

per OSIM. Fig. 4 shows a colorized point cloud of a scene reconstructed from 50 

images collected from HL2.  

 

Fig. 2. Microsoft Hololens2(HL2) 
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Fig. 3. Data collection using gesture control 

 

Fig. 4. Colorized pointcloud obtained by performing SfM on 50 images 

2.3 Damage segmentation to get binary mask 

To filter out the spalling region from the rest of the image, an image mask is used in 

the pipeline. A binary mask is an image that can be used to extract regions of interest 

for the damage. In the binary mask image, all the black pixels are filtered out and the 

white pixels are segmented (saved) to isolate the damage from the rest of the image 

(see Fig. 5). In practice, on-site, an inspector wearing HL2 can create this mask using 

interactive segmentation wherein the user (inspector) picks a few seed points inside 

and outside the damage and the artificial intelligence-enabled method can create a 

segmentation mask to separate the spalling damage. For more details, readers are 

referred to a previous paper [6] from our research group on interactive segmentation. 
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Fig. 5. Binary mask overlaid on the damage 

For the sake of scientific analysis of the quantification method only, for the laboratory 

experiments, we used a ground truth segmentation mask which was generated manu-

ally for one image. Using ArUco markers the one mask can be distorted to fit all the 

images used in the point cloud generation. An algorithm in the OpenCV library [12], 

[13] was deployed which detects and recognizes the corners of the ArUco marker and 

accordingly distorts the ground truth mask to fit a given image (see Fig. 6). Using 

these binary masks, the point cloud region containing the spalling damage can be 

filtered from the whole reconstructed scene.  

 

Fig. 6. Manual segmentation mask used to segment the damage 

2.4 Volume estimation 

From the point cloud obtained in section 2.2 and the binary masks obtained in section 

2.3, a point cloud region of the spalling damage is segmented from the larger point 

cloud. Using an open-source library, open3D [14] for 3D data processing, a colorized 

point cloud can be converted to a triangular mesh solid which assists the quantifica-

tion process.  To facilitate the process of finding the volume of the damage, we first 

define the volume of the damage as the quantity of missing material (say, concrete) 

which has been detached from the rest of the component. Intuitively, this will be the 

volume between the triangular mesh that we create and the hypothetical undamaged 

flat surface plane (HUFP) of the component. It is to be noted that in its current itera-

tion, our method has been adapted to quantify spalling damages on flat surfaces only. 

To get the HUFP, a few points are selected in the immediate exterior neighborhood of 

the damage. Theoretically, these points should lie on one plane. This plane can be 
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found by fitting a plane through the points selected in the exterior neighborhood using 

RANSAC [15] which is a random sampling-based method to fit data to a model, in 

our case, the plane model. 

 

We propose the following volume calculation methodology. Since the mesh of the 

damage is a triangular mesh (Fig. 7), it is composed of triangles connected through 

common edges, and corners. The contribution of one of such triangles to the total 

volume of the damage can be viewed as the volume this triangle encloses between 

itself and the hypothetical undamaged flat plane (HUFP) of the component in the 

form of a slender solid projection (see Fig. 8). Mathematically, this can be found by 

multiplying the area of the said triangle and the mean of the distance of its corners 

from the HUFP. Once these steps are repeated for all the triangles comprising the 

damage mesh, the volumes can be summed up to get the total damage volume. This, 

of course, is an estimation but one which is within acceptable limits of error in terms 

of the intended applications of the method. 

 

Fig. 7. 3D Mesh reconstruction of the mesh 

Fig. 8. Volume calculation for one triangle in the mesh 
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3 Experimental Validation 

As mentioned in section 1, the method is evaluated on a 3D printed damage, this ena-

bles us to have the ground truth volume of the missing damage from Rhinoceros 3D 

software which can be used as an error metric for the proposed framework. For the 

laboratory experiments, 50 images were taken of the damage from different view-

points, while moving in a circular arc around the damage. The experiment was repeat-

ed by taking images at average distances of 1, 2, 3, 4 and 5 m. Using these images, the 

colorized point cloud was obtained from SfM (section 2.2), and using the manual 

segmentation mentioned in section 2.3, the point cloud was segmented, the mesh was 

generated, and volume was obtained in real world units. Experiments for this paper 

were conducted 20 times for each distance range. Each iteration of the software pro-

duced slightly different volume results since the plane segmentation relies on 

RANSAC which is a random sampling-based method. The average error in volume 

computation when compared to the volume obtained from CAD model is within a 

range of 6.5% at the closest range of 1m to within 12% in the most unfavorable condi-

tion. As the inspector moves away from the defect, the results become more unrepeat-

able and deviated, this conclusion can be drawn from the categorical scatter plot pre-

sented in Fig. 9. 

 

Fig. 9. Categorical scatter plots for average error evaluated at different distances 

4 Conclusion 

In this study, the authors propose a novel image-based, 3D modeling reconstruction of 

a structural spalling defect to automate the process of quantification. Utilizing the 

algorithms of Structure from Motion, the damage is reconstructed in three-

dimensional space on real-world scale using images and camera pose information 

from an XR wearable device. The method has been tested on artificial damage to 

gauge its accuracy in computing the volume of damage. The results of the laboratory 

experiment show that the accuracy is within 6.5% in close range (1m) compared to 

the ground truth. 
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