Unsupervised Semantic Segmentation with Pose Prior (USP)

Max Midwinter, Chul Min Yeum, Sriram Narasimhan

Chul Min Yeum

Assistant Professor

Civil and Environmental Engineering

University of Waterloo

Presentation at SHMII11 Aug 8, 2022

UNIVERSITY OF WATERLOO FACULTY OF ENGINEERING

Computer **Vi**sion for **S**mart **S**tructure

Current Visual Inspection Process

- Manual process for inspectors
- Use basic tools such as measuring tape.

Disadvantages:

- Time-consuming
- Inaccurate
- Expensive
- Inaccessible regions
- Inefficient
- Dangerous

Vision-based Inspections

- Automated platforms: robots, drones, wearable glasses
- Use AI to automatically detect and localize defects in images.
- Measure defect sizes using 3D sensors (LiDAR, time-of-flight).

Vision-based Inspection Tasks: Quantification?

Classification

Detection

Segmentation

Convolution Neural Network (CNN)

Challenges

- 1) Creating a labeled segmentation datasets is time-consuming, tedious, and expensive for training supervised segmentation models.
- 2) In a typical inspection using a robotic platform (e.g., drones), videos are captured, and many frames contain the same ROI, captured from different camera positions and angles is challenging to specify unique segmentation ROI by weeding out incorrect or, merging suboptimal segmentation and selecting/integrating correct segmentation results.

Objectives

- 1. Propose unsupervised semantic segmentation with pose prior (USP), which best leverages novel developments in machine learning and capabilities of existing robotic inspection.
- 2. Utilizes **a series of images** (with pose) featuring the ROIs from various known camera poses to improve segmentation accuracy.
- 3. Provide accurate segmentation masks without using eliminates the need for expensive labeled data; meanwhile enforcing consistency between segmentation results from multiple frames.

Pre-Processing: Homography Transformation

Reference frame

Other frames

Unsupervised Segmentation (Architecture)

Kim, W., Kanezaki, A., & Tanaka, M. 2020. "Unsupervised learning of image segmentation based on differentiable feature clustering." IEEE Transactions on Image Processing, 29, 8055-8068.

Unsupervised Segmentation (Loss Function Design)

 $L = \underbrace{L_{\text{sim}}(\{\boldsymbol{r}'_n, c_n\})}_{L = \underbrace{L_{\text{sim}}(\{\boldsymbol{r}'_n, c_n\}}_{L = \underbrace{L_{\text{sim}}(\{\boldsymbol{r}'_n, c_n\}}_{L = \underbrace{L_{\text{sim}}$ feature similarity spatial continuity scribble information

1) Feature similarity

Enhance the similarity of the similar features.

2) Spatial Discontinuity

Group similar pixels into clusters: The constraint is introduced that favors the cluster labels to be the same as those of the neighboring pixels.

3) Scribbles (seed point) as a user input

Incorporate multi-frames segmentation results.

Stochastic Consensus

.....

Inlier Segmentation

Seed point segmentation

Experiment: Site

Overview of the test bridge

Previous Work: XRIV

- eXtended Reality Inspection and Visualization (XRIV).
- Localize and quantify defects.
- Interactive segmentation through MR.
- Limited Range: <5m.

Al-Sabbag, Z. A., Yeum, C. M., & Narasimhan, S. (2022). Interactive defect quantification through extended reality. *Advanced Engineering Informatics*, *51*, 101473.

rames from Two Damage Locations

*----

Damage 1

Bounding Box Detection from A Reference Frame (Manual)

Damage 1

Preprocessed Frames

Damage 1

Raw Frames from Two Damage Locations

Damage 1

Segmentation Results

Ground truth

USP

	IoU (%)
Defect 1	84.8
Defect 2	87.7

Human-Machine Collaborative Inspection (HMCI)

- <u>Robot</u> scans bridge using highquality cameras and LiDAR to build a 3D map.
- <u>Remote server</u> analyze images to locate defects using deep learning.
- <u>Inspector</u> visualizes defect region on the real structure using MR.
- Inspector can re-visit structure and compare changes of defect region size over time.

Thank you! Any Question

413 views + 6 months ago

207 views • 7 months ago

https://cviss.net

83 views • 4 months ago

83 views • 3 months ago

UNIVERSITY OF WATERLOO FACULTY OF ENGINEERING

398 views • 7 months ago

