Multi-Dimensional Structural Assessment with a Mobile Scanning Device

Presented By: Rishabh Bajaj

PhD Student, Civil and Environmental Engineering

University of Waterloo

Co-Authors: Zaid Abbas Al-Sabbag¹, Chul Min Yeum¹, Sriram Narasimhan²

¹ Civil and Environmental Engineering, University of Waterloo

² Civil and Environmental Engineering, University of California, Los Angeles

Presented at TCRC2022 August 24, 2022

UNIVERSITY OF WATERLOO

FACULTY OF ENGINEERING

Computer Vision for Smart Structure

Outline

- 1. Background
- 2. Challenges
- 3. Proposed Methodology
- 4. Experiment and Results

Various Structural Inspection manuals have a recommendation for inspection frequencies every 24 months

- British Columbia, Canada
- Ontario, Canada
- Michigan, USA
- Massachusetts, USA

"It is expected that in order to adequately assess the condition of all elements, the inspector should plan to spend at least 2 to 3 hours at a typical bridge site. For large bridges, this time will increase."

Ontario Structure Inspection Manual (OSIM)

Background: Current Inspection Practices

a. Preparations for Inspection

b. Typical Inspection Notes

Limitations

- Time-consuming
- Inaccurate
- Expensive
- Inaccessible regions
- Inefficient
- Dangerous

"In many cases, the inspection should be conducted within arms length of the element, possibly involving tapping with a hammer or making measurements by hand."

Ontario Structure Inspection Manual (OSIM)

Challenges: Multi Dimension Measurements using Sensors

Severity

- Light Spalled area measuring less than 150 mm in any direction or less than 25 mm in depth.
- Medium Spalled area measuring between 150 mm to 300 mm in any direction or between 25 mm and 50 mm in depth.
- Severe Spalled area measuring between 300 mm to 600 mm in any direction or between 50 mm and 100 mm in depth.
- Very Spalled area measuring more than 600 mm in any direction or greater Severe than 100 mm in depth.

from OSIM

Infrared (IR) Depth Sensors

Q2: Do these sensors have enough range?

Accuracy-range trade-off

Proposed Methodology: Multi-Resolution Mapping Routine

HARDWARE SETUP

Backpack Configuration

Flir Blackfly Ethernet Camera (330 USD)

Livox Avia (1600 USD) -Solid state lidar -Integrated IMU -Non-repetitive circular scanning

Intel NUC (680 USD)
-Mobile Computer

Mapping Software: R3Live (Open Source) github.com/hku-mars/r3live

Total Cost ~ 2600 USD

The scanner is a self-contained piece of equipment that uses tightly coupled *LiDAR-Inertial-Visual* state estimation to perform spatial mapping.

Step 1. Data Collection: Design a High-fidelity Mobile Scanner

Handle Configuration

Step 2a. Create Global Map (M₁): Scanning with our Mobile Scanner

Step 2a. Create Global Map (M_1) : Insufficient Resolution of the ROI

Step 2b-1. Record a Close-Range Video of ROIs

- Fabricate artificial spalling damage using 3D printing
- Collect a video data using a Microsoft Hololens2 (Mixed Reality Device)
- Note that the proposed methodology is platform and technique agnostic for local mapping

Step 2b-2. Reconstruct ROI in a 3D Space (M₂)

- Perform Structure from Motion (SfM) using images of the ROI
- Using open-source software: openMVG (<u>https://github.com/openMVG/openMVG</u>)
- SfM reconstruction provides higher detail and enables quantification ability for damages [1]

Step 3. Perform Global Registration: Maps with Different Resolutions

M₁: A larger 3D map from LiDAR+Camera data

M₂: Higher resolution 3D Reconstruction of ROI

Step 3. Perform Global Registration: Problem Statement

The goal here is to register the higher resolution damage map (M₂) on the global map (M₁) which will enable the spatial map alignment.

Step 3. Perform Global Registration: Localization Algorithm

Step 3. Perform Global Registration: Intended Outcome

• Using the transformation T_{M2}^{M1} we can know where the ROI in M_2 is placed in $M_1 \longrightarrow$ Global registration

Step 3. Perform Global Registration: Result

Local Map (M_2) registered to Global Map (M_1) after localization (Global Registration)

Step 4. Perform Tight Alignment: ICP Result

Local Map (M_2) registered to Global Map (M_1) using Iterative Closest Point (ICP) (Tight Alignment)

Global Registration Result

Step 4. Perform Tight Alignment: Refined Result

Local Map (M_2) registered to Global Map (M_1) using ICP (Tight Alignment) - post refinement

Conclusions

- 1. We provide an efficient way to
 - Perform quick mapping of larger structures
 - High accuracy mapping for ROI
- 2. Perform registration to build a Multi-Resolution Map which can enable Multi-

Dimensional Structural Assessment

LEVERAGING COMPUTER VISION TECHNOLOGIES FOR SMART STRUCTURES AND RESILIENT COMMUNITIES.

210 subscribers	r Vision for Smart St	ructure Lab		CUSTOMIZE CH	IANNEL MANAGE VIDEOS
HOME VIDEOS	PLAYLISTS CHA	ANNELS ABOUT	۹		
Jploads					- SORT BY
Competer Vision for Smart Starture 3D Printing Connectors for High Fidelity Backpack Sc: 0:57	Annual	High Fidelity Backpack Scanner	HIGH ACCURACY INFRASTRUCTURE MAPPING 2:36	AR-VR COLLABORATIVE REMOTE INSPECTION	0.58
3D Printing Connectors for High Fidelity Backpack	Unboxing the New Varjo XR-3 Headset #cviss #cviss-lab	High Fidelity Backpack Scanner	Accurate 3D Infrastructure Mapping (Parking Garage &	AR-VR Collaborative Remote	Auto Spall Quantification w/ HL2 (OSIM)
121 views • 2 weeks ago	441 views • 4 weeks ago	757 views • 1 month ago	415 views • 1 month ago	336 views • 2 months ago	252 views • 3 months ago
LOW-COST 3D MAPPING	HODM SCALE 2:22	2:53	HoldLets 2 ROS PointCloud2 viewer	Sur Recent	1:00
Low Cost Handheld 3D Lidar Scanner	Virtual Reality Point Cloud Viewer	Distributed Collaborative	HoloLens 2 ROS PointCloud2 viewer	Robotic Civil Inspection - Gazebo Demo	Interactive Defect Segmentation Using XR (1st
2.5K views • 3 months ago	226 views • 7 months ago	179 views • 8 months ago	879 views • 10 months ago	261 views • 11 months ago	475 views • 11 months ago

Smart Structure

FACULTY OF ENGINEERING

Thank you! Any Questions?

cviss.net

